v, o

-

L T ]

NACA TN No. 1425

NATIONAL ADVISORY COMMITTEE
FOR AERONAUTICS

TECHNICAL NOTE

No. 1425

NONLINEAR LARGE-DEFLECTION BOUNDARY-
VALUE PROBLEMS OF RECTANGULAR PLATES
By Chi-Teh Wang

Massachusetts Institute of Technology

FOR REFERENCE

NOT 70 BE (AKEN FROW THis ROOM

LIBRARY COPY ~N[rcfa

ety (141986 : Washington
LANGLEY RESEARCH CENTER March 1948
LIBRARY, NASA
HAMPTON, VIRGINIA




1)

NATIONAL ADVISORY COMMITTEE FOR AERONAUTICS =~ =

TECHNICAL NOTE NO. 1k25

NONLINEAR LARGE-DEFLECTION BOUNDARY-
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SMMARY

The present report presents a theoretical enalysis of en initilally
flat, rectangular plate with large deflections vmder either normal.
pressure or combined normal pressure and side thrust. As small
deflections of a flat plabte are governed by a single lineer equation,
large deflections introduce nonlinear terms into the conditions of
equllibrium and are governsd by 2 fourth-orrler, second.—degree s, partial
differential equations. These so-called Von Kermsh equations are
studied in the present report by use of the finlte-difference approxi-
mations. The difference equations are solved by two msthods, namely,
the method of successive approximations and the relaxation method..
Neither of these methods is new, but their application to nonlinear
problems requires mew technigues. B S

The problem of a uniformly loaded square plats with boundary
conditions which epproximate the riveted sheet-stringer panels is
golved by the mothod of succegslve epproximations. The theoretical
center deflections show good egreement wlth the rscent experimental
results obtained at the California Institute of Technology when the
deflections are of the order of the plate thickness. This agreement
perheps suggests the range ln which these Von Kalmsn eguations are
to be appliled. .

Other problems of thin plates with large deflectlons are discussed
from the point of view of an aeronautical enginser. The boundary
conditlons which approximate the various cases are formulated, and the
mothods for solving these problems are outlined.

Since the method presented in the present report is general, it
may be applied to solve bending and combined bending and buckling
problems with practically any boundary conditlons, and the results may
be obtained to any degres of accuracy required. Furthermore, the same
method mey be applied to solve the membrans theory of the ;plate which
applies when the deflection is very large in comparison with the
thickness of the plate. T
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INTRODUCTION

The clasgsicel theory of the bending of a thin elastic plate expresses
the relation between the transverse deflection of the middle surface of
the plate w and the lateral loading of intensity p by the equation

DV = p

EnS

12(1 - p?)
known that the theory is restricted in application, for on the one hand
its basic assumptions can be questioned unless the plate 1s thin, and
on the other hend it neglects an effect which must be appreclsble
when w has values comparable with the thickness. This ls the membrane
effect of curvature, whereby tension or compression in the middle
surface tends to oppose or to reinforce p. The effect is negliglble
when w 1is very small, provided no stresses act Inltlally in the plane
of the middle surface; bubt even so, 1t operates when w is small
because strotching the middle surface is & necessary comnsequence of the
trensverse deflection. When the deflection geots larger and larger,
the menbrens effect becomes more and more prominent until for very large
values of w +tho membrane effect is predominant whereas the bending
gtiffness is comparatively negligible.

where D =

is the flexural rigidity of the plate. It is

Small transverse dlsplacements of a flat elastlic plate are governed
by & single limser equation but large displacemsnts entail streitching
of the middle surface and consequent tensions which, Interacting with
the curvatures, introduce nonlineer terms into the conditions of
equilibrium end so meke those equatlions no longer Independent.

The large-deflection theory of flat plates is glven by A. Fdppl
(reference'l), and the second-order terms were formuleted by Thecdore
von Kdrmsn in 1910 (reference 2). The amended (large-deflection)
equations have been solved, however, in only a few cases (references 3
to 19) and then with considsrable labor.

Essentially there are three problems concermning flat plates with
large deflections. They are:

1. The bending problems, when the flat plates are subjected to
lateral losding perpendicular to the plane of the plates, but no
side thrust is applied in the plane of the plates

2. The bucl&].ing problems, when the plates are subjected to alde
thrusts in the plane of the plates but are not loaded laterally

3. The conbined bending and buckling problems, when the plates
are subJected to both lateral loading end side thrusts
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In the cage of metal alrplanses, in which weight is of primery
importance, the metal sheets used must be thin and the deflections of
the plates are usuelly lerge In comparison with thelr thickness. In
‘order to obtain the design foremmles or charte for stressing such
plates, the large-deflection theory must be used. T

The bending problem is Importent in the design of seaplanes.
Seaplanes are subJected to a severe impact during landing and teke-
off, especlally on rough water. The impact must be withstood first
by the bottom plating end then by & system of transverse and longl-
tudinal members to which the bottom plating is attached, before it is
transmitted to the body of the structure. The bottom should be strong
enough not to washboard permanently under these ilmpact pressures.
Such washboexrding 1s undeslirsble because of the increased friction
between the float bottom.and the water and also because of the incroased

eerodynamic drag in flight. .

The bottom plating of sesmplanes 1s, as a rule, subdivided into
a2 large munber of nearly rectanguler areas by the ansverse and
longitudinal supporting ribs. REach of these areas bshaves substantially
like & rectanguler plate under normel pressure. Beunding of rectengular
flat plates may thesrefore be used to study the washboarding of seaplane
bottoms, provided the boundary corditions at the edges can be fomulated.
Just as in the seaplans. -

The buckling problem is important in determining the strength
of sheet-stringsr pensls in end compression. The use of stlffened

sheet to carry compressive loads is increasingly populer in box beams

for airplane wings and in othsr types of seml monocoque construction.
Inasmuch as the sheets used as alrcraft structural elements are geflerally
quite thin, the buckling stresses of these sheet elements are necessarily
low. The designer is thersfore confronted with the problem of using

sheet metal In the buckled or wave state end of determining the stress
distributlion and allowgble etresses in such buckled pletes.

The comblined bending end buckling problem has hecome a problem of
importaence with the increesing use of wings of the stressed-skin type
and the pressurized fuselage construction for high-altitude flight.
During flight the wing is subjected to a pressure difference betwesn
the two sldes which produces the 1ift. The normel pressure acts
directly on the sheet covering and ls then dilstributed to ribs and
spars. At the same time the sheet panels are also subjected to a side
thrust dus to bending of the wing. In an airplane of pressurlzed
fuselage construction an attempt 1s made to keep the pressure inslde
the cabin at & comfortable level for the passengers, regardless of the
sltitude of the alrplane. Thus, thers is a pressure dlifferentlal across
the fugelege skin with an Intermal pressure higher than that outside. ‘
The fuselage skin is usuelly subdivided into & number of rectanguler
curved panels by longitudinel stringers and rings. These pansls are
subjected to the pressure difference and slde thrust resulting from

bending of the fuselage. As pointed out by Niles a.nd. Newell (reference 20)
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the strength of curved sheet-stringer panels cen be determined approxi-
mately from the flat sheet-stringer panels. The problem ie then
esgentially that of determining the strength of flat plates under combined
lateral loading and side thrust.

Levy (reference 19) has shown that the effective width of a square
plate with simply supported edges decreases with the aﬁdi'bion of lateral

pressure and that the reduction 1ls appreclable for PEE > 2.25. Therefore,
- Eh

a panel 1s unsafe I1f 1lts design is based upon the side-thrust considerations
only, ani the study of combined loading ls of great slgnificance.

A great number of authors have studied +the bucklling problems, and
conslderable experimental work hes been carried out. As a result,
design formulas eare avallable and seem to be accurate for most practical
purposes. The bending problems, however, have been studied by only a
few investigators, and test results (references 21 to 23) are far too
gcarce to Justify any conclusions. The conmbined bending and buckling
problem hes been studied in only one case (reference 19) , and even in
this instence the results are incomplete.

Among the solutlions of the large-deflection problems of rectanguler
plates under bending or combined bending and compression, Levy's solutions
are the only omes of a theoretically exact mature. His solutlons are,
however, limited to a few boundary conditions and the numerical results
can be obtained only after great labor.

The purpose of the present Investigation is to develop & slmple
and yet sufficlently accuraete method for the solution of the bending and
the combined bending end buckling problems for englneering purposes,
and thls is accomplished by means of the finite-difference approximations.

Solving the pertial dlfferentlal equations by finlte-differsnce
equations has been accomplished previously. Solving the resulting
difference equations, however, is still a problem. In the case of
linear difference equations, solutions by successive approximation
are always convergent and the work is only tedlous. Besides, Southwell's
relaxation method may he applied without too much trouble. But, in
order to solve the nonlinear difference equations, the successive-
epproximation method cannot always be relied on beceuse it dces not
elweys glve a convergent solutlion. The relaxation method, since 1t is
nothing but intelligent guessling, can be applled In only a few casee
and then with great difficulties (reference 16).

A study of the finite-difference expressions of the large-deflsctlon
theory reveals that a technique can be developed by means of which the
system of nonlinear difference equatlons can be solved with rapid
convergence by successive approximation by using Crout's method of
solving a system of lineer simulteneous equations (reference 24). By
way of illustretion, a squere plate under uniform normal pressure wilth

boundary conditions epproximeting the riveted sheet-stringer panel
is studied by this method. Nondimensional deflectlons and stresses are
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glven under various normal pressures. The results are consistent with
Levy's approximete numericel solution for ideal, simple supported plates
(reference 19) and Way's approximate solution for ideal clamped edges
(reference 15) , end the center deflsctlions check closely wlth the itsst

results by Head and Sechler (reference 23) for the ratio pa)"'/Eh as

large a8 120. The deviation for the ratio pa /Ehll' larger then 120
is probebly dus to the eapproximations employed in the derivation of
the baslc differentiel squation.

The procedure ls qulte general; it may be applied to solve the

problems of rectanguler plates of any length-width ratio with various
boundary conditions under either normal pressure or combined normal
pressure and slde thrust.

The present investlgation was origlnally cerrled out under the
direction of Professor Joseph S. Newell at the Danlel Guggenhelm
Aeronautical Taboratory of the Massachusetts Institute of Technology
and was completed at Brown Unlverslty, under the sponsorship and with
the financiel support of the National Advisory Committee for Aeronautics,
where the author weas participating in the program for Advanced Instruction
and Regearch in Mechanics. The author was particularly fortunate to
receive frequent advice while working on this problem from Professor
Richard von Mises of Harvard Unlversity. The author is grateful to both
Professor Newsll and Professor von Mises for thelr many veluable

suggestions.

SYMBOLS
length and. width of plate, respectively
thickness of plate - .

coordinates of & point in plate

horizontal dlsgplacements of points in middle surface
in x- and y-directions, respectively (nondimensiona.

forms ere ua/h2, va/h°, respectively)

deflection of middle surface from 1ts Initilal plene
(nondimensional form is w/h)

normal load o:L:: plﬁte per unit area (nondimensionel
form is pa /ERT)

Young's modulus and Poisson's ratlo, respectively

3 __
Eh

Fflexural rigidlity of plate ———eee -

QE(l - ueD
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ax‘*+zéxﬁay2+ay4 )

- membrene stresses in middle swrface (nondimensional
forms are oy 'a®/Eh2, O'y'a.z/EhQ, and Tw'a,e/EhE,
respectively)

1 H L]
Ox,c'y,‘l'm-

" " extreme-fiber bending and shearing stresses )
(nondimensional forms are oy "a2/Eh?, c:\r..)',"a.z/Eh2 ,
and. ‘l'xy“a.Q/Eh2 , Trespectively)

' membrane strains in middle swrface (nondimensional
forms are 64'a?/h2, Gy'ef"/he, and 713"8‘2/112’

respectively)

ex"y €v"y Txg extreme-fiber bending and shearing sitrains

Py (nondimensional forms are €x"a?/h2, ey"a?/he ,

and 7xy"a2/h2: respectively)

F gtress function (nondimensional form is F/En2)

A, A2,..., 8% first-, second-, ..., to nth-order differences, .
respectively

B, by first-order differences in x- and y-directions,
respectively

FUNDAMENTAL DIFFERENTIAL EQUATIONS

The thicknsss of the plate 1s assumed small compered wilith its other
dimensions. The middle plsne of the plate is taken to coincide with the ~
xy-plane of the coordinate system and to be & plane of elastic symetry.
After bending, the points of the middle plane are displaced and lie
on some surface which is called the middle surface of the plate. The
dlsplacement of & point of the middle plene in the dlrection of
the z-axis w 1s& called the dsflection of the glven polnt of the plate.

Conslder the case in which the deflectlons are large in comparison
with the thicknsss of the plate but, at the same time, are small enough
. to Justify the following assumptions: -
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1. Lines normsl to the middle surface hefore deformation remain
normel to the mlddle surface after deformation.

2. The normal stress o, perpendiculer Yo the faces of the plate
is negligible in comparison with the other normel stresses.

In order to investlgate the state of straln in a bent plate, it
is supposed that the middle surface 1is actually deformed and that
the deflectioms are no longsr smell in comperison with the thilckness
of the plate but are still =mall as compared with the other dimensions.

Under these essumptlons, the following fundamental partial

differentlal equetions governlng the deformetlon of thin plates can ’be
derived from the compatibllity and equilibrium condlitions:

at wmRy? t ax 32 352

2y e 2,k (aEF Pu Fr v Fr P
Ry PR moayxy

3
where D = Eh , the medlen-fiber stresses are ) -
12(1 - p=)
Sy
ot = TF
I -
Xy d3x dy

and the median-fiber stralns are ——

er__];éﬁ 82 - - S
X T E\yp? Ha2 )

i 623‘ §_‘_2£' : . -
¥ ax aya .
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g 1o 2(1+p) Pr -
Xy B ox Oy

The extreme-~fiber bending and shearing stresses ere

W o B (P a%D

TR - )\t

o " = - Eh 82 a%(
4 21 - &) \&2
s v .En  Pw

X 2(1 + p) Ox dy

These expressions can be made nondimensionel by writing

= =:z
W
w'::-l-l- y’:z—
b 2
'aﬁ- ! oo ==
SA—" ¢ €<1a>

o' =2(2 2
E\}1
where a 1s the smaller side of the rectengular plate.

The differentlal equations then become

b by 2
3 F! St ' 3! | Pyt Py
Ox ! +2 ax:E ay + ay'h' Qxl ay' dx 12 ay'2

L 4 I 2
d'w! O w! O w! _ 2 _ 2 B% w!
axlll- * 231:!2 ay'2 * ay‘,h. = 12(1 K )Pl +.12(l B ) ay‘E ax'2

, P B Fr a2w'>
dx 12 ay:E ! Jy' X' dy
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If p? = 0.1, which valus is characteristic of aluminum alloys, and
the primes are dropped, the partial differentlial equations in nondimensional

form are
L
3 3'p P\~ %y
jwax?ay? ay“ (ax> i )
oy o 25 3%

.-E'+2Bx23y2 —E_=108p +10.8 57 52

PP B )
" 2 5 axayaxay

The nondimensional medlan-fiber stresses are

.-G
zayQ
O
e
Tay'™= -

Ox

~

and the nondimensionsl medlan-fiber strains are
\
exl a.l B_.E
¥y M2

, _dF Fr
it e (%)

%r
7W' = -2(1 + p)

3y
J

The nondimensionsl extreme-flber bending and shearing stresses are
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-~
g = _____:_L_______ __lﬂT aEw
x o(1 - 12\ &2 'oyE
R N 32 aaw _
O'y. 2(1 - [.12) > > ())
I aaw
e 2(1 +p) x Yy
A

FORMULATION OF BOUNDARY CONDITIONS

The governing differential equatlons are 2 fourth-order simul-
taneous partial differentiel equations in two variables. In order to
obtain a unlque solution in the case of rectangular pletes, there must
be four glven houndery condlitions at each edge.

Before proceeding to the actual case, two theoretical boundary
conditions may be mentloned:

l. Simply supported plates, that is, plates heaving edges that can
rotate freely sbout the supports and can move freely along the supports

2. Clamped or bullt-in plates, that is, plates having edges that
are clamped rigildly ageinst rotation about the supports and at the same
time are prevented from having any dlsplacements along the supports

Actually, it is to be expected that neither of these conditlons will
be fulfilled exactly in a structure.

The bending problem wlll be considered next, in which the bottom
plating of a seaplane is to be studied. The behavior of the sheet
approximates that of en infinite sheet supported on a homogensous
elastic network with rectanguler fields of. the same rigldity as the
supporting framework of the sscaplene.

Becausc of the symmetry of the rectangular flelds, the displacement
in the plens of the sheet and the slope of the sheet relative to the
plane of the network must be zero wherever the sheet passes over the
center line of sach supporting heam. Each rectengular fleld will
therefore behave as g rectangular plete clamped elong its four edges on
supports that are rigld enough in the plans of the sheet to prevent
their displacement in that plane. At the same time these supports must
have a rigidity normel to the plans of the sheet equal to that of
the actual gupports in the flying-boat bottom.
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The rigldity of the supports will lis someswhere bstween the
unattalnable extremes of zero rigldity end infinite rigidity. The
extreme of infinite rigidity normal to the plane of the sheet is
one that may be approximated in actusl designs. It can be shown that
the stress distribution in such a fixed-edge plate will, in most cases,
be less favorable than the stress distribution in the elastic—edge
plate. The strength of plates obtainsd from the thsory will therefors
be on the safe side if applied in flylng-boat design. Reference 'might
be made in thls conmectlon to a paper by Mesnagsr (reference 25),
which it 1s shown that a rectanguler plate with elastic edges of certa.in_
flexibility will be less highly stressed then a clamped-edge plate. This
difference in stress may also be clearly seen by comparing the extreme-
fiber-stress calculations by Levy (reference 19) and Way (reference 15)
for slmply supported plates and clemped plates.

The impact pressure on a flying-boat bottom in actual cases,
however, is not even approximately uniform over a portion of the sheet
covering several rectanguler fields. Usually one rectanguler pansl of
the bottom plating would resist a higher impact pressure than the
surrounding panels, and the sheet 1s supported on beams of torsional
stiffness insui‘ficien‘b to develop large mowenls along the edgss. The
high bending stresses at the edges characteristic of rigidly clamped
* plates would then be ebsent. In order to approximate this condition,
the plate may be assumed to be simply supported so that it 1s free to
rotate about the supports. At the same tims the riveted Joints prevent
it from moving 1ln the plane of the plate along and perpendicular to the
supports. According to the same consideratlons as in the case of rigldly
clamped edges, the result would be on the safe side. This case has
nsver before been discussed and the study of such a problem sesms to
be of importance.

For the comblined bending and buckling problems the same consider-
atlions will hold. It is evident, however, that as soon as the side
thrust 1s epplied, thers are d.ispla.cements perpend.icula.r to the
supported edges in the plane of the plate. Gall (refersnce 26) has
found that a stiffener attached to a flat sheet carrying a compressive
load. contributod approximately the same elastic support to the sheet
as was required to gilve a simply supported edge (see also reference 20,
P. 327). In combined bending and compression problsms, therefore, it
sgems also lmportant to study the ideal simply supported. plates. ‘Ebe
analyticel expressions for these boundery conditlons are formulated in
the following dlscussion.

Simbly Supported Edge

If the edge y =0 of the plate is simply supported, the deflection w
along this edge must be zero. At the same time this edge can rotate freely
wlth respect to the x-axis; that i1s, there is no~ bending moment M%,
along this edge. In this case, the analytical formwlation of the bhysical
boundary conditions is S
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(W)y=o =0

Py, B o (6)
ay2 “axg ¥y=0 )

Similarly, if the edge x = O of-the plate 1s simply supported, the
boundary conditions are

(W)x0 = ©
Py
<3x2 ¥ ”aya %=0 =0

Since w =0 along y = 0, Ovw/dx and d%w/Xx® must be zero
also. The boundary conditlons can therefore he wrlitten as

(W)y=0 =0
525 (7
<$>y=0 =0
Similarly, on the edge x =0,
(Wx=0 = 0

=0
@.

If the plate has ldeal simply supported edges, it must be free to
move along the supported edges 1n the plane of the plate; that is, the
shearing stress along the eodges in the plans of the plate is zero.

; ;5 2
< )

ny-)m -

|
(&

|
o
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°F >
= Q
<§x oy 720

in) -0
ox oy 0

One more boundary condition is requlred to solve the plate problems
uniquely, and this may be obtalned by speclfying elther the normal
stresses or the dlesplacements along the edgss.

or

For a plate havling zero-edge compresslon, the normal stresses along
the edges are zero. That is,

(5 )ymo = °
or —
<g§g)x=0 =0
~ (8)
J

The strain in the medlen plane is

.,,ag+;<a_vre
fx Tax T 2\Wx

%'=%+§<§f
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Therefore

CE
au- = € 1 l— Qﬁ)
ox x 2\9
2
ﬁ[ =¢ ' - l" @f
oy ¥ 2\gy
and the displacement of the edges In the x-direction is

: 3@ e
? f y=Constant [ex 2 \Bx) =

while the displacemeont of the edges In the y-dirsction is
.
ot 2 ]
x=Constant!. oy.

The addltion of side thrust may be expressed in terms of the
change in displacement of the edges. .

If e¢,' eand ey' are expressed in terms of the stress function F,

r 2 2 27]
ER-ERII

u = n
J y=Constant dy? x? 2

T B P 1w
7 Uxtonstant | 2 &2 2@1@ ,de

.

S (9)

Clamped or Bullt-In Edge

If an edge of & plate is clamped, the deflection along this edge
1s zero, and the plane tangent to the deflected mliddle surface along thils
edge coincides with the Initial position of the middle plane of the plate.
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If the x-axis coincldes with the clamped edge, the boundary
conditions are :

(Wymo = ©
@

If the y-axis coincides with the clamped edge, the boundary
conditions are

7 (10)

(Wlzp = 0

(@

If the edge is clamped rigidly against eny displacement along 1ts
support, the strain in the median fibers must be zero along that edge.

The poundary conditions are
¢ ' =0
(y>x=o

Cx> =0
. y=0

or

. B Lo
x° a37'2:c=-0

C (11)
55’2 312y=o

J

The one additional conditlion required 1s agalin furnished by
specifying the dilsplecemsnts along the edges as in equation (9).
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Riveted Panel with Normel Pressure Greater than That of

Surrounding Panels

The boundary conditions which would approximate this situstion
ere, 1f y =0 1is one of the edges,

“
(Vo =0
A\
-
(a& =\ Y > (12)
5172 ”'312 y=0
Pr . % 1 wV
x=Constant [52’-2 “332 2 (aY) 4 =0
y

The first two expressions are those of simply supported edges,
the third one glves the condition of zero sirain along the supports,
and the last one specifies that the displacement along the edge is zero.

REVIEW OF PREVIOUS WORK

The large-deflection theory of flat plates is glven by A. FSppl
(reference 1), and the difficulty of solving the nonlimear equations
has besn noted by Theodore von Kermen (reference 2). The earliest
ettempt to deal with these differential equations was, perhaps, made
by H. Hencky (references 3 and lL), who devised an approximate method
of solution for circular and squere plates when the deflection is very
large, the bending stiffness being then negligible. Following the
seme procedure, Kaiser (reference 5) solved the case of & simply supported
plate with zero edge compression under lateral loading. His theoretical
result checked closely with his experimental data.

In the case of circular plates with large deflections, because of
the radiel symmetry, the two fundamentel pertial differential equations
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which contain the linear biharmonic differential operator and quadratic
torms in the second derivatives can be reduced to a palr of ordinary
nonlineer differential equations, each of the second order. For both

the bending and the buckling problems, exact solutions are available
(references 8 to 12). The bending problem has been solved approximately
by Nedai (reference 6) and Timoshenko (refersnce 7) and exactly by

Way (reference 8) when ths plate is under lateral pressure and edge
moment. Way gave & powsr-serises solution for & rather lerge rangs of
applied load. . The buckling problem has been solved by Federhofer
(reference 9) end Friedrichs and Stoker (references 10 to 12). Federhofer
gave the solution for both simply supported and clamped edges which
ylelds accurate results up to values of N of about 1.25, where N 1is
the ratio of the pressure applied at the edge to the lowest critlcal

or Euler's pressure at which the buckling Just begins. Friedrichs
and Stoker gave a complete solution for the simply supported circular
plate for N up to infinity. To cover thls range, they employ three
methods. Each of the three methods is sultable for a particuler range
of valuss of N: namely, the perturbation method for low N, the
power-series method for intermediate N, and the asymptotic solution
for N approaching infinity. There is no solution, however, for

the case of circuler pletes under combined lateral pressure and edge
thrust.

The exact solution for & thin, infinitely long, rectangular
strip with clamped or simply supported edges was obtained by Boobnoff
and Timoshenko (references 13 and 27), and the other cases were discussed
by Prescott (reference 14), Way (reference 15), Green and Southwell
(reference 16), Levy (references 17 end 19), and Levy and Greenmen
(reference 18).

Prescott glves an approximate solution for the simply supported
plate with no edge displacement; however, Prescott’s approximation
is rather rough. Way presented a better approximate solution for the
clamped plates by using the Ritz energy method. Kalser (reference 5)
trensformed the differential equations into finite-difference equations
and solved them by the trial-snd-error method. Green and Southwell
extended the finite-difference study into finer dlvisions and solved
the difference equations by means of the relaxation method.

Levy (reference 19) glves a general solution for simply supported
plates, and numerical solutions ars glven for square and rectangular
plates with a wldth-spen ratio of 3 to 1 under some combined lateral
and side loading conditions. Ievy and Greenmen (references 17 and 18)
extended this solution for simply supporited edges to clamped edges.
Their conditions are, however, limited to the cass in which the edge
supports are assumed to clamp the plate rigidly egainst rotations and
displacements normel to the edge but to allow displacements parallel
to the edge. They presented a numerical solutlon for square and
rectangular plates with e wldth-spen ratio of 3 to 1 under lateral
pressure.
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In summary the problem of rectangular plates with large deflectlons
has beent solved by three methods: namely, the energy method, the finite-
difference-equations method, and the Fourler series method. These methods
are briefly odutlined 1n the following paragraphs.

Energy Method

The method of attack used by Way (reference 15) 1s the Ritz
energy mothod. Expressions ere assumed for the three dlsplacements
in the form of algebraic polynomlels satlsfying the boundary condlitlions;
then, by means of minimizing the energy wilth respect to the coefficlents,
a system of simmltansous equations 1s obtained, the solutlon of which
glves these coefficients.

The ensrgy expression for plates with large deflesction is

2 _
V=ff (Vaz) -qw+6[ux2+uxwx2+vy2+vywy2

T 2 2 Wi Wy
+ (s + WyR) + 2 Ty + Yy 4 vyl

1 -
- K (uyg + guyvx + vx? + 2uywxwy + waxwy)] dx dy (13)

+

where u end v are the nondimensional horizontal displacements and w
N
is ths nondimensional vertical displacement, ¢ = P—-z— , &and the subscripts
16Dh
indicate psrtiel differentietion. In order that u, v, and w
satisfy the boundary conditions for clamped edges, Wey assumes (fig. 1):

w = (1 - 22)(p2 - 72)x(bgg + boy? + Pogx® + Dopxy?)
v = (1 - B)(B2 - yB)ylegy + copy? + opgx® + oppxy?) r o
W= (l - x)E(Be - ye)e(aoo + a02y2 + 8-20::2)

where B8 = 2; u, v, w are positive in the positive directions of x,
Yy, 2, respectively; and 8431 bi,}: cy3 are numerical constants to be

determined later. TFor convenience, 1 1is taken to be the same as the
power of x, and ] that of j¥.
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When V is minimized wilth respect to the coefficients ay 3
bi,j , eand Ci4s 11 simulteneous equations corresponding to the
11 constants, are obtained as follows: -

O O: OV _ O: =0 (15)
3 - s

Ba.oo 83.02 oa,

oV , X _ 5. OC ., OV

= = 0; = 0; = 0; =0 (16)
oo Mop Sbog bop

S g O _g; S _o, L _o (17)

= s = Vs = 3 =
30 Schp 340 denn

These equations are not linear in the constants. The first three
equations (equation (15)) will contain terms of the third degree

in the a's. FEquations (16) and (17) are linear in the b's and c's
and quedratic in the a's. Way solved equations (16) and (17) for b's
and c's, respectively, in terms of a's &and then substltuted these
expressions in eguation (15). There then ere left three equations

of third degree involving the a’s alons. These were solved by Way
by successive approximations.

Wey gives the numerical solutlons for cases for which B =1,
1.5, and 2, for pu = 0.3 up to g = 210. Since he assumed the dis-
placements to be polynomials in x and y of finite number of terms,
his solutions are essentially approximate. By comparing with Boobnoff's
exact solution for the infinite plate, Way estimated that the error of
his solution for B =2 is about 10 percent on the conservative side.
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Finite-Difference Methods of Solution

Kaiser writes the nondimensional Von Ksrmén equatlons as follows:

\
2o 2 a%ra%
VS—Qxay axﬁay =K
VeF = S
aap P P By R
’12(1-;&)2“:9'1’“
VawsM'
D,

and then transforms these five eguatlions into finite-difference equatlons.
His procedure is to assume w's at all the points and then to solve

for S8's, F's, M's, and w's. If the calculated w's do not check
with the essumed ones, he assumes & new set of w's and repeats the
process. The work which this involves is very tedious. In fact, as

will be pointed out later, when the usual method of successive
approximations is used, the process is actuvally divergent. Kalser

solved the simply supported square pla.tﬁ wlth zero edge compression

under a uniform lateral pressure of B2 =% = = 118.72. His numerical solutio:
Eh .
checked with his experimental resulis with good acocuracy.

Southwell and Green solved four examples of the problem by means
of a technigus based on the relexstion method. The fundamental
requirements for use of the relaxatlion technlgquwe are a simple finite-
difference pattern of the variables and a simple expression of the
boundary conditions. In using this, Southwell and Green expressed the
differential equations in terms of the displacements wu, v, end w,
which then gave simple boundary conditions. Instead of using exact
relaxation patterms, they worked with the petterns whlch are gliven
by the linesr terms of the differsntlal equations snd made corrections
from time to time, the nonlinear texrms being combined with the
"residuve.’
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P BR e ) Bk
3% - e“(@]*‘l'“’m 5 g‘i’g&)

aw
2
ov
&t
S
LCBD (a:j = gjvz °
_.._..E

@Y HE o [
s@ D1 @ e
~

It is readlly seen that, in order to obtain a gimple expression
for the boumdary condltlons, no-b only is the nunber of the partial
differential equatibns increased frow two to three, but also the form
of the terms involved becomes more complicated and. the number of terms
is inoreased. This technlgue proves very lgborious In practice.

Equation (19), expressing conditions of equilibrium, could have
been derived by minimizing the total potentlal emergy V, which 1s
glven by the expression

2
IV
Byt I
where
2
I1=§ff@2‘9 ax ay
_3 2 2 1-p 2>
_efféxx +eyy +2p’°3ﬁceyy+ > xy dx dy
and

I3=-o'. w dx dy

where o 1s the lateral loading.
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The relexation technique consists first in assuming & set of
answers and then changing them according to the relaxation pattern
and bowmdary conditions. To obtain a more rapld convergence, Southwell
and Green multiplied the given valuss of w by k and substituted
them Into the ensrgy expresslion to obtaln

By _ ;
27 e kl"Ie + oy (21)

vwhich wes then minimized with respect to k; that is, by setting

QY =0 %o
o give

2KI) + MST, - oIy = 0 (22)

From the third-order equation (equation (22)), k can be obtained and
a set of values for w whlch ere closer to the trus values can be
dorived from veluss of k. ’

Fourier Serxrles Methods of Solutlon

Lovy and Greemman obtained gensral solutions of the rectangular
plates (fig. 2) under combined bending and side thrust with large
deflections by means of Fouriler serles. Thelr approach to these
problems is glven In the following discussion.

Simply supported rectangular plates.- In order to satisfy the boundary
conditions, w ls assumed to be glven by the Fowrier series

w = wmnsinm’%sinn’% (23)

m=l,2,3 n=l,2,3 ’

The normal pressure mey be eXpressed as & Fouwrler series

- .
TCE y
v, = S E Pr,s sinr 2 sin s T (2k)

r=1,2,3 &=1,2,3
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For the compatlibility equation to be satisfled, F must be given by
- 2 - 2 -] (-]

Dy Pyx = Ty
R E E by q COS P F 08 4 3 (25)
p=0,1,2 ¢q=0,1,2

where Dx and Py are constants equal to the average membrane pressure
in the x- and y-directions, respectively, and where

E

Py, = (By + B + B3 + B) +Bs + Bg + By + Bg +B9) (26)
h@eh + g2 5)2
a b
and
Bl= i[kt(p - k) (g - %) -kz(q-t)] L A

k=1 t=1

4

if q#0 and p # 0.

By =0 if ¢=0 or » =0.

By = [kb(k +p)(q - t) +x3(q - t)] Mieap, gt
k=l -b-l ’
if q # O.
Bo=0 1f ¢q = 0.
co g-1
B3 = [(k + p)it(q - &) + (& + p)2(q - t)a:] Vickp, £, g -t

k—-l 'b-—l

iIf ¢ £#0 and p # 0.

O if g=0 or p=20.

o}
w
]
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By = Zi kt(p - X)(t + q) + k(¢ + q)] Vie, £¥p -k, tq

k=] t=1

if p # 0.

Bl;.=01fp=0.

Bs = Zi I:kt(t +q)(p - k) + Kzt]‘fk tq¥p-k,t -

k=1 t=l

iIf p£0 and q # O,

Bs =0 if p=0 or g =0.

Bg = iz [_kt(k +p)(t + q) - K2(t + q)] e t¥kep, trg

k=1 b=l
if q # 0.
Bg =0 1If g=0.
B, = ZE E:‘b('b+g_)(k+p) -k2t:| Vi trgieep, b
k=1 t=1
iIf g #£0 amd p # 0.
Br=0 if p=0 or g = 0.

Bg = ZZ[M(k )6+ @) - (4 D)2+ s e
=1 t= e e T T

ko5
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if g #0 and p #O0.

BS:OifP:O or qu.

9 =Z§:Bk+1’)(t +q)-1ct - (x + p)2%

k l t-—l p’ . ._,

if p # 0.

The equilibrium equation is satisfied if

25



26 NACA TN No. 1h25

= Dw 2’.‘- - ’é-i W 821.!-2-
Prg =D g T 42 7F ? thwr ¥y 58”13

- - - 2
lle.a'ba Z Z (s - t)k (r k)b -k, s- -t%, ¢
k=1 =1

2
Wk + - k(t
[ (kx + r) (v + s):] Dy, t¥iewr, s

I
M,

[(k"'r)(t""‘j - ]bkt-i-skﬂ:t
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2
[tk + (r -~ k)(t + s)] br-k,twk,t+s

ot
&

s _
[(t +8)k + (r - k)‘_‘] Prvie, 8%, &

g
] Mg

i
[t}

4]

2
[(s -t)(k+r) + tl;l P, s=t¥ler, ©

I

3

+
N
i

2
[(s - t)k + t(k + r)] 'bk+r’s+twk,t} N €10
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When the lateral pressure is given, Pr,g can be determined.
Equation (27) represents & doubly infinite Pamily of equations. In
each of the equations of the family, the coefflcients bp,q may be
replaced by their values as glven by equation (26). The resulting
equations will involve the known normal pressure coefficients Pr,s;
the cubes of the deflectlon coefficients Wy n, and the average
menbrens pressures ln the x- and the y-d.irec%ions, Dy and T, . -
respectively. Values of Px and py can be determined from%he
conditlons that the plates are elther subJected to known edge compressions
or known edge displacements. The number of these equations is squal
to the number of unknown deflsction coefficients Wi, e

The procedure now is, with the known values of Pr,s, To assume Y11

end to solve the other coefficients by successive a.pprox:hna.tion. However,
the work lnvolved 1s tremendous, and 1t is very easy to make mistekss.
As illustrated by Levy in a relatively simple case of a square plate,
if six deflection coefficients are used, then each equation contalns
60 third-order terms. And for each givsn applied normal pressure
these six 60-term, third-order equations must be solved by successive
approximations. - '

Clamped. rectangular plates.- Levy and Greenman solved the case of the
clamped rectangular plate by assumling that the edges are clamped rigidly
against rotations and dlsplacements normel to the edges but are permitted
to move freely parallel to the edges.

The required edge momsnts my and m,. &are replaced by an

auxiliary pressure distribution ps(x,y) near the edges of. the plate.
The auxlllary pressure can be expressed as a Fourler series as follows:

o I © L
pa(x,y) = Z _EII. sin = 4 Z ;“";xs sin §%,Z (28)
r=l’315 33'1,3,5

By writing m, eand m, as Fourler series, where kg and k. are
coefficlents to be determinsd,

mx-—P z Iy sin o

r=1,3,5

> (29)
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Inserting equation (29) into equation (28) gives

-]

Pa(x,y) =(§>2p i Z (rkg + sk,.) sin r_asg sin E.? (30)

r=1,3,5 8=1,3,5

On combining the auxiliery pressure pg(x,y) with the normel
pressure p,, equation (24), the following equation is obtained:

po(x,y) = Z Pr,g sinr ,-;—'-m sin s ’.‘-BZ i (31)
r=1,2,3 8=1,2,3

where

Pr.s =G-:>2 (rpkg + spk,) + Pr,s’ (32)

Since the edge moments my end my have been replaced by the
auxiliery pressure distribution pa(x,y), the general solution for the

simply supported rectangular plate (equations (23) to (27)) cen be
applied to clamped plates, and the remaining problem is to determins
the values of kg and k.. These values are obtained by use of the

boundary condition that the slope at the edges of the plate is zero.
Equating to zero the normal slopes along the edges glves

B0 S S T
I=O,x=ﬂ. m’__‘l,3,5 n=l,3,5

~

> (33)

-] [}

' Qf) 0 5 B L ogin X
E - = - m n ——
(ay ¥=0,7=b 2., :
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Equation (33) is equivalent to the sst of equations

\
0 = Wl’l + 3Wl’3 + 5Wl’5 + eve
0 = es e >
w3,l + 3w3,3 + 5W3’5 + (3%)
0= w5,l + 3w5,3 + 51;5’5 + eee
J

. The deflection coefficients wy n must now be solved from the
family of equations (equation (27)) for the linear term in terms of the

cubic terms and the pressure coefficlents Pr ge The expresslons for Ym,n

thus obtained are now substituted into equation (34), and the expressions
for pressure coefflcients Pr g &are obtainsd from eguation (32). The
resulting family of equa'bions contains linear terms of pk, end kg

and the cubes of the deflection functions "’m,nb

The method of obtalning the required valuss of the deflection
coefficients Y, n and the edge-moment coefficlents pk. and pkg

I
consists in assuming values for -—i—’-‘l‘ end. then solving for 29'1,
w1 Eh
-Eé s «++y Pkg, Dk, ... by successive spproximations from the _

similtaneous equations. The procedure is even more laborious 'bha.n that
for simply supported plates. Two numerical solutions are given, nemely
solutions of the bending problem for a square plate a.nd. for a recta.ngular_
plate with length-width ratio of 1.5.

FINITE-DIFFERENCE ZQUATIONS OF BOUNDARY-VATUZ PROBLEMS

Scome fundamentel concepts about the finite-difference approximation
mey be worthy of mention before the partial differential equations are
converted into finlte-difference expressions.

It is assumed that a function f£(x) of the varisble x i1s defined
for equidistent values of x. If x is ons of the values for which f(x)
is defined, f£(x) is also dsfined for the valuss of x + k Ax, where Ax
is ths in'berval betiween two successive valuss of x and k is an integer.
For the sake of simplicity, the valus of the function y = f£(x) for
X + k &x may be written as:

f(x + kAX) = Ixikx
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The f£irst difference or the dlfference of the flrst order Ayx

of y abt the point x is now defined as the increment of the value
of y obtainsd’in going from x to x + Ax:

Nyy = Txarx =

It is seen that the incremsnt in the direction of increasing x has
been arbitrarily chosen; Ay, could also be defined by the difference
Yx = Yx-Axe This process is contlnued and the increment of the first

difference obtalned in going from x to x + 4Ox 1s called the
difference of second order of y at x; that is,

2
BTy = Nxinx - Dx

Q’x+2Ax - yx+Ax) B Qx-hAx R4 x)

= VxioAx T Fxax t Iy

In general, the difference of order n is defined by
AR n-1 n--ly
Yy =8 Yxunx - B x
If Ax 1s chosen equal to unity,

Yx+nx = Ix4n

‘By the use of this notation, the sequence of differences becomes
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A% = Z (-1)"

e Ixsn-r (35)
r=0 : °

In many physical problems only differences of even order occur.
In such casges 1t is more convenlent to define the differences

n2n ¥, in the following wey:

2
ATz = Vg1 - Ry tIgyy

That 1s, Aa.vx is the increment of the first difference taken on the
right- and left-hand sldes of the point x. In geoneral,

ny = 22y ) (36)

In this case & difference of order o2m represents & linear expression
in yx-m, Ix-m#is ccs TIxr s Ixymels Yx+m*®

In replacing partial derivatives by the finlte-difference
expressions, the dlfferences corresponding to the changes of both the
coordinates x and y are considered. With the notatlons as shown

in figure 3, the first differences at a point Am n 1n the x- and
the y-directlons are, respectlvely:

Amon = Ymel,n T Ymon

A_rwm,n = ¥mon+l T ¥mn
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The three kinds of second differences sre as follows:

AJ!IWm‘,n = Ax m,n

- 2V,

N
m,n Y

¥m+l ,n m-1l,n

2
Sy Ym,n

2yy¥m,n

ow,

= ¥m,nel T “mn T Ymon-1

= A.Ywm-!-l,n - A.y’wm_,n

Lxy¥m,n

= Gml,nﬂ B wm+:l.‘,n> B 6m,n+1 - Wm,rD

= Vm+l,nel  "mel,n

The three kinds

W +
m,n+l

~

(37)

W
m,n

)

of fourth differences, which will be used later, are:

\

Axxxzwm,n = l"""’1:1."3::,

= ¥mig,n "~ lmm+l,1:1 + Gwm,n - ll'wm-l,n * ¥pe2,n
Ayyyy¥m,n = A:rl}"’m,n

= ¥o,nip " uwm,n+l + 6wm,n - 1""’in‘,n-l + ¥m,n-2 > (38)

Ym,n = Axyzwm,n
= ¥mil,n+l 2w'm+:-|.,n * ¥me1,nel " zwm,:n+1 * h'wm,n
" ¥mnel T ¥pe1ne T 2¥pe1,n ¥ ¥m-1,n-1
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Partial derivatives mey be approximated by finite differences as

follows:
oA w4y
x &’y &y
Pu A R A
22 P P
3% =A1;yw
x oy Ax &y
P VR,
Bhw %IZW

22 o2 oxlay®

™~

(39)

When these relations are used, the fundamental partiel differential
equations (1) and (2) mey be replaced by the following difference

eguetions:
ST, A% T (Bew e o
Ax A2 Ay gt \ix oy A oyR

L > )1 2 2,
L A s a@_z_{

\

(40)

AT A AgF agw

&P Ay© Ox Ay Ox
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If Ax = Ay =Al, aund the relations (37) and (38) are used,
equation (4O) mey be written as

Fm+2:n B aE|m'*'l,n + EOFm,n - 8E"m-l‘,n + Fm-e,n + Fm,n-Pz T Ym,n+l

" 8y n1 * Fmnep * P ned t Fred nel ¥ Fped ped * Ty nog

2
= Gm+l,n+l " Vmil,n T Vmnil F Wm,xD - 6m+l,n - &y * Wm-l,rD

X Gm_,nﬂ " 2Wyon wm,n-]) (x1)
and.
Ymip,n ~ 8“rm+l,n + 20wy n - 8"rm-]._,n * ¥mo,n F ¥ponee T 8Wm,n+l

- 8"Tm,n-l * Wy onep * 2Mnel,nel F Fmed n-1 2“m-l,n+l * 2Wm-l,n-l

i
= 10.8(A1) p + 10.8 [@m’nﬂ - QF’_”"‘ + Fm’n_])
X Gm+l,n = ¥ on "' wm-l,zD + @mﬂ_,n - 2Fm,n + Fm—l,rD
X Gm,n+1 " 2yt wm,u-]) - 2€m+l‘,n-!-l " Fnia,n T Fmpper t Fm_,:rD

X Gm+1 ,afl " ¥mialn T Ymna T wm,n)] (x2)

In actually writing these equations for each net point, it is more
convenient to employ the finite-difference patiern or so-called
relaxstion pattern as shown in figure 4 rather than to substitute
directly into eguations (41) end (k2).

In terms of finite differences, the boundery condltions can be
formulated in the memner dilscussed in the following paragraphs.
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Simply Supported Edge
The boundery conditions for the simply supported edge y =0 ere:

N

and, for plates with zerc edge compression:

(eﬁ) o
y=0
or, for plates with zero or known edge displacements:
1 2 |
188 1@ ,

Tet n =0 denote the edge points along y = 0. The finite-
difference expressione for the boundary condltions are:

wm,o =0 )
’ s
CONS
; 4 (1)
G,
m,0
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for plates wilth zero edge compression and
S [a2e - wa2r - 3 (s
2o ot @ ], - )

wvhere n =0 and n =k denote points along the two edges y = 0 and
¥y =Db, respectively, and 1 denctes any point along the linw x = Constant

Clemped Edge
The boundexry condlitions for the clamped edge y =0 axe:

(W)y=o=0

@‘;Dyw -0 ]

Er I .o
3y2 uax":";r:r---o

HERE:S Gl

With the seme notations as were used for the simply supported edges,
the finlte-dlfference expressions are:
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W,

m,0 = 0

(A'.v"’)m,o =0
CA.YQT B "Ax%m,o

Sl - 167,

Riveted Panel with Normel Pressure Greeter then That of
Swrrounding Panels-

J

The boundery comiditions which approximete this case are:

(w)ygo =0

G&
ay2 y=0

2
ay2 2 y=0

[

if y =0 18 one of the edges.

Expressed in terms of finite differences, these conditions

‘become :

37

(46)
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<

Wm0 = 0 .
(AY% m,0 =0
(Ay'zF y “szam,o =0 ) (47)

~

The boundary-value problem which epproximetes the riveted sheet-
stringer panel subJjected to wniform normel presswre higher then that
of the swrrounding pensls mey be forsmlated in terms of finite
differences.

In order to start with a simpler case, the square flat plate will
be dlscussed, since, on account of symmetry, only ome-eighth of the .
plate need be studled.

The finlite-difference aspproximetion of amy differential equation
requires that every pcolnt in the domain to which the equation applies
must satisfy the initial differential equation. If the polnts to be
teken are infinite in number, the solutlon of the difference equations
1s the exact solution of the corresponding differential equations. But
the points to be taken are finite in number, the solution will be
approximate, and the degree of approximation will increese a2s the
mumber of points taken is reduced.

Since the diagonals of a square plate are axes of symmetry, 1f
the boundary oomditlons along the four sides are the same, Wy e =W g
b4 2

and Gi,k = ek,i‘ The conditions for zerc edge displacemonts mey
Pe put into different forms. Since

u=f%dx=f.€xdx-f%<g£>2dx-0

then

-

Jouen [33 )



In terms of finite differences,

x-1
Hegdo,s * (ox)y g + ooe + (xdnys + oot Bleah,q = 5)” ; (A2, 5 E
. X-1 o g
- 2 - .
= 5ax) ;("ml,i 1‘m,:D lé__

Similarly, in the y-direction,
k-1
1L 1 1 2 2
-2-(53')1,0 + (Ey)i’l + ees + (Gy)i’n 4 ees +§(Gy)1’k - E(M) ; (%w) 1’11
1, 2% ' 2
=5{4y) 61 il ‘1,9
n=0

The sum of these two equations and the fact that Y1k = Vk,i (Gx)i,k = (Gy)k,i,
and Ax = Ay = Al give

1. 1
'é(ex + Gy):l,o + (ex + G;f)i,l + oen + (eg + ey)i,n T G ey)i,k-l + E(GI + Gy)i,k

© k-1 :
- W-];;E ;Gi,ml ) wi,DE | (8)

6¢
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Now,

£y | Fr, Pr

Gx “+ Gy aya p'axa axz aye

2
ag E’F>(l--|u.)
&= o

D) @

2
Note that V- = a-?- + L. Eguation (48) then beccmes
x° 35'2

@1 0 +2v2F>1 Lt oeee * 2<Vei>i’n+ see + 2v23>1,k-1
k-1

< )1 k (m)a Z_.; Q’i,nﬂ - wi,rDE _ (49)

This simplification is not necessexry, but 1t is u.sefuli in applying the
relaxation method.

n = l.- On referring to figure 5, it ls seen that points 1' and 2'
are fictitious pointes placed outside the plate in order to give a
better approximstion to the boundary conditions.

-3& the wse of p.2 = 0.1 or p = 0.316228 for aluminum alloy,
the compatibllity equetion beccmes

20F, - 32F; + &, + 4 = K, (50)
where

. 2
= (wy - 2wy + wp)® - (2w - 2wp)
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Then the equilibrium equation is

20w - 32wy + 8wp + bw,. = p' + 10.8[2(2F; - 2Fy)(2w; - 2w)
- 20wy - 2wy + wo)(F, - 2Py + FO):] (51)

where p' = 12(1 - u2)(81)*p = 0.675p, stnce Al = 1.

The boundary condlitlons axe:

(a.)wl-_-o, W, =0
(b) wyi - 2wy +wy =0
(c) Fy - 2Fy + Fq1 - u(2F, - 2F;) =0

() (k¥ - ¥F,) + (Fg + 2F, + Fyr = U4Fy) =85;

2 (vy - wo)?

= « The boundary-value problem
(L - u) 0.3418% _
now determines the valwes of w uniquely and the values of F +to within
en unknown constant. Since the actual velws of the constant is lrrelevent,

it may be defined by letting ¥, = O.

where S, = (wq - wo)2

Sclving Wit, Wyt and Fl' from the boundary condii:,ions.gives
the following result:

Wll = -'Wo

'W'21="'Wl=0

g
k.
[

Fy + 2(1 - u)Fl
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, When these values are substituted 1into equations (50), (51), and (4),
the resulting equations are

— 2
16F - 26.52982LF, = -3v,
16wb =p' + h3.2wab L (52)
w02
-4F 1.367544F, = e
o+ 1351 = Siiees

/

The eight or nine significant figures in these equations are due to
computations made with a computing machine having 10 columns. In order
to get satisfactory results in subsequent computations it is convenient
to retain a number of figuree beyond those normally considered Justl-
fiable because of the precision of the basic data.

n = 2.- With reference to figure 6, points 3', 4', and 5' are again
fictitious points. The compatibllity equations are:

- 32F_ ¥ g =
QOFO 3 ;) F 8F2 + F3 Kb

-BF, + 25F) - 16F, - By + 6F, + Py =Xp s (53)

2 - 22F 4y - léF 2F 2F . =K
FO 'éEl + o+ 3 Lt 5 + 2F, -

where K5, K;, and K are equal to (Axyw)Q - szw Ayew at points
1, and 2, respectively.

0,
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The equlllibrium conditions are:
20wg - 32wy + 8w2 + I+W3
=p' +21.6 l:(ao' + Bg')(wy - wp) - 7'(wg - 2wy + w2)]
-8w0+25wl-16w2 -BW3+6W)++W3|

=p' + 10.8 l:al'(awa - 2uy) + By '(wo - 2wy + W3)

7 (54
- 271'(1\11‘, - W3 - Wo + wl):l )

BWg - 16wy + 22wy + bwg - 16w, + 2wy + 2wy,

= p' + 10.8 [@2' + Bg}@h— i L +WD N 272'65 - 2w, +w2>]

J

where a', B!, 7' are Axa.ﬁ', AyQF, AJRYF at the respective points
indlicated by the subscripts.

The conditions for zero edge displacements aret

"2Fo~3Fl+)+F2-2F3+2F}++F31 =Sl

(55)
Fo - 5E‘2+2F3 +F5 +F)+| =32

where

1 2 2 |
Sl = m [(‘W’l - WO) .-+ (w3 - ‘Wl) N

- wl)2 + (wy - w2)2

1
S2 = 53mak |2 g
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The boundary conditions are:
(2) w3 =0, wy =0, w5=0
(v) W31 42v-r3 +w) =0
Wyt = 2wy + Wy =0

W,)-,_t -2W5 +w,+=0

(c) Fy - oF3 + ¥ p(2F), - 2F3) =0

3|
Fp = 2Fy + Fye - p(F5 - Fy + F3) =0

0

Fh - 2:5‘5 +F5l

For the same reason as explained in the case of n =1, let Fy = O.
Solution of the boundary-conditlons equations gives

(a) W3t = =Wy

Wyt = W

(é) F5l = -Fll-
th = QF)-I- + |.L(F3 - QF)_’_) - F2
Py = 2F3 + u(aFy - 2F;) - Fy
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The ccmbination of the foregoing equations (a) end (o) with equatlons (53),
(54), end (55) glves

-&F, + 2lFy - 16F, - 6.632456F3 + 6 -632456Fy, = Ky
oF, - 16F, + 20Fp + 4.632456F3 - 13.264912F; = K, , (56)
~2Fg - 4Fy + Wy - 0.632456F 3 + 2.632456F) = S;

Fo = 63'2 + 2.31622&'3 + 1.3675th,_|_ = S,

and

[20 + 21.6(ay’ + By' + 70'2_} W0 |

- [32 + 21.6(ay' + Bg' * 270']"1 + (8 + 21.670")v, = B’
~(8 + 10.88; ")wy + [211- + 21.6(aq" + By 7l'ﬂwl |
[16 + 12.6(ay" + 7,")]wp = P’ > (57)
[16 + 10.8(as" + Be'ﬂwl
+ l:go + 21.6(ap' + By + 72'ﬂw2 -

3

where p' = 12(1 - pz)(A'l.)h"_p = 0.0421875p, since Al = -i“-;.

n = 3.- Reference is made %O figure T and to the fact that points 6',
7', 8', and 9* aye fictitlous points for reasons expleined in the case
n=1; then the campatibillity equations are .as follows:
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20Fo - 32_Fl + &E‘e + }-I-FB = I{o
-85‘0 +'25Fl - 16F2 - 8F‘3 + 6F)+ + F6 = Kl

2Fo-16Fl+22F2+1+F3-l6Fh-i-2F5+2F7=K2

. : 8
FO '&.l+}-|-F2+20F3 ‘l&E’h+2F5‘&'6+ll-F7+F6| ”I% ( (5)
3F) - &, - 83 + 23F), - &5 + 2Fg - &, + Fg + For = K
2Fp + 2F3 - 16F), + 20F5 + WP, - 16Fg + 2F + 2Fgr = K5
J

where K,, Ky, K,, K, and K5 are equal to [@WWE _%2%21;]

at points 0, 1, 2, 3, 4, end 5, respectively. -
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The equilibrium equations are:
20w, - 32wy + Biy + by = D'+ 21.6[(%' + Bo")wy - wo)
- 7o' (wp - 2wy + "72):\

"8“‘0+25Wl'16?2-8w3+6m+

=p'+ lO-BEQ:l'(we = wl) + Bl-i(VO = éwl + W3)

- 27ll(wl - Wy - Wy +'wll_)]

=7p' + 10.8Ea2' + Ba’) (wl - 2wy + "’11») - 272'(W2 - 2w, + V5)_-J

Vo - 8wy + by + 20wg -16Hu+2w5-8w6+kw7+w6:
=p"' + 10.8[51.3'(.2?1; - 2w3) + Bg'(wy - 2w3 + vg)
- 2r3'(w3 - wy - wg + w.?):l
3wy - 8w, '8"3+23;1L'8"5+2V5'8"7+3w8+w7'
= p' +10.8(ay (w3 - 2w, + w5) + By'(wp - 2wy + W)
- 27,y - w5 - W+ "8’]
2w, + 2wy -16wh+20w5+1m7-16w8+2w9+2w8.

=p! + 10.8@15' + B5.')(W)+ - 2Wg + wg) - 275’(w5 - 2w8 + w9):|

47

> (59)
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whore «', B', and 7' arve AzaF: AyQF, A-WF at the respective points
corresponding to the subscripts, and p' = 12(1 - ue)(AZ)l‘Lp = 0.00833333p,

since Al = 'é‘.

The conditions for zerc edge displacements are:

-
'23‘0-2Fl+)+F2'5F3+1PF1|_'2F6+@7+F61 =32
Fo-le2+3F3-3F4+2F5+F6-2F7+F8+F7,=82 > (60)
Fl+?_'E'2-2F3‘ﬂ“h'iﬁ'5+F6+3F7+F9+F81=S3

where

k-1
s, = _2 6 - 1>2
1 - i 3 m+l’i m,
The boundary conditlons are:

(a)w6=0, w7=0, w8=0, w9=0

(b) w6, "25!‘6 +‘W'3=0

=
1

2w7+wu=0
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() F3 - 2Fg + F6, u_(ﬂ‘-? - 2}‘6) =0

Fll--2F7+F |J.(F8+F6"'2F7)=0

7 _ .

Fg - 2Fg + Fg, -u(F9+F7—2FB)=O

F., - 2F 0

+F8

9! 9

Solutions of the boundary-conditions equatlons glve

(a)

W6’ = -w3
w7, = W),
w8, = W5
w9' =0

(e) Fe, = T3 + 1.367544F, + 0.63211-56F7
Foo= Ty + 1.3675kkF, + 0.316228F¢ + 0.315228Fg
Fgy = F5 + 1.36754kFg + 0.31622&'7
Fgr = Fq |

where F. =0 1s assumsd for the same reason as explained in the case

9
Of n=l.



50 NACA TN No. 1lh25

Combination of the foregoing equations gives:

20Fg - 32F) + &, + WF3 = K,
-8y + 25F) - 16F, - 8F3 + 6F) + Fg = K
2Fg -16Fl+22F +1+F3-16Fh+._F + 2F; = K,
- 87y + 4F, + 185-3 - 167, + oFs = 6.632456Fg + u.6321;561:-7 = Ky
3F; - &y - &3 + 22F), - & + 2.316228Fg ~ 6.632456F7
+ 3.316228Fg = K), |
2, + 2F3 - 16F) + 185 + k.632456F, = 13.264912Fg = s
-2Fg - 2Fy + WF, - 6F3 + i&Fu - 0.632456Fg + 2.632456F, = 8,
Fo - ¥Fp + 3F3 - 4F), + 2F5 + 1.316228F¢ - 0.632456F,
+ 1.316228Fg = S,

Fy + 2Fp - 2F3 - 2F) - 6F5 + Fg + 3.316228F, + L.3675U4Fg = 84

/

h(61)
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and j
[20 + 21.6(ag" + B’ + 7o'zlwo - Esa + 21.6(ay" + Bo' + 7°'ilwl

+ (8 + 21.670>w? + lms =p"

- <8 + 10.8Bl>wo + 1}5 + 21.6(aq + B! + 71’ilwl

- EL6 + 2L.6(a ' + 7].@ W - [8 +10.8(B " + 271'5]1.’3
+ (6 + 21.671")wy, = 2'
2y - EL6 +10.8(a, " + 532')]w1 + [22 + 2L.6(a" + By + 72')]w2
+I1Lw3 - E.6 +10.8(a," + By' * hfg'ilwu
L(Sa)
+ (2 + 2167, )wg = B’ 1
Wg - (8 + 10.853>wl + hwe + [19 + 21.6(¢Bt ',,_ [33! + 73l):]w3
- [16 + 21.6(a3' + 73'2"’1; + 2w5 =7p'
3wy - (8 + 10.88y")w, - (8 + 10.8ay *)w3

+ [22 + 2L.6(a," + By' + mﬂm - [8 + 10.8(a, " + 271;’)]?5 =o'

o, + 2y - El.é + 10.8(::.5' + ;35') Wy,

+ [18.4- 21.6((1.5' +.$5' + 75') w5 = p'
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METHOD OF SUCCESSIVE APPROXTMATILONS

Explanation

ATter the boundery-value problems are oxpressed in terms of
Tinite-difference equations, two sets of simultansous eqguations are
obtalned. The first set consists of the compatibility equations and the
equations specifying the condltion of zero edge dlsplacements. These
equations conteln linsaxr terms of the nondimenslonal stress functlon F
and the second-order terms of the nondimsnsional deflection w, and
are of the form

cOOFO + GOIFJ_ + cae + cOnFn = KO

°10Fo + chl + e + °lnFn =K._L

A | (63)

1OF +c'lll+-co+c'ﬂn=sl)

where Ky = @xyxbg CAx )(AY%D a.t points O, l a.nd. so forth,

_2
ond to the subscripts of K; S
corresp Ing subscripts o H g = I :(Ax‘am,i’

and Cog, Cgys +++s ©'39» ©C'1y, +e+ &re given constants.

The second set consists of the eguilibrium equations, which contain
the linear terms of w with coefficlents involving linear terms in F
and are of the form

Goo + Doo%'o + 2’0080 + b 007 @ *0
+ 601 + baa'y + 25 B + b"o:ﬁ’@"'l
+ oees GOn + bop'o + D'opB o *+ 'b"On?"QWn =p'

A ()
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where a' =APF, B' =AP°F, 7! = A F at polntg 0, 1, + + «
corresponding to the subscripts of a', B8', 7', and agy, 801, ¢ . .,

bOOJ bOl’ LR ) b'OO’ -b'ol_, e o ey, “oo, "01, v s o« &re Si'VEIl
constants. . .

If a get of values of w 1s assumed at each of the net points
and the values of K; and S; are computed, eguation (63) becomes

8 gystem of linser simultarsous egmwations in F and can therefore
be solved exactly by Crout's method for solving systems of linear
similtansous equations (reference 24)., After the velues of F have
been computed from equation (63), values of o', B', end ¥' can
be found without any difficulty. Then equation (6L4) becomes another
system of linear simultaneous equatlons and may be solved exactly by
Crout's method again. If the values of w found from equation (64)
check with those assumed, the problem is campletely solved.

In most cases, howsver, the values of w will not check with _
each other. By following the usual method of successlive approximations s
the computed w's will now replace the asswumed onss and the cycls of
computatlons will be repeated. If the value of w at the end of the
cycle still does not check with the one assumed at the beginning of the
cycle, another cycle wlll be performed. In this problem, however, if
the ordinary method were followed, the resulis would be found to diverge,
oscillating to Infinity. Therefore, a speclel procedure must be devised
to meke the process converge.

A simple case will be examined first. In the bhoundary-value
problem In which n = 1 under the normal presswe »p = 100, eguation (52)
can eeaslly be reduced to the form .

- —
16 + 37.6908wn2

¥o

wod + 0.42450Tw, - 1.790888 = 0 (65)

The third-order algebraic equation can easily be solved, and the roots
of thls equatlon are

Wy = 1.098254 and (-0.549127 t 1.1528781)
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For the physlcal problem, only the real root is of interest because
the imaginary roots do not have any physicel meaning.

An atbempt will now be made to solve equation (65) by the usual
mothod of successlve approximations. It ls assumed that _

Wo = 1.200000, wWoZ = 1.4L0000

67.5
= ——iee = (960516
Yo = 7o ok 9005

Wol = 0.922591

If it is assumed that w02 = 0.92259). for the second cycle and that
the value of w02 found from the second cycle is the valus for the

third cycle, and go on, the followlng values of woe are found from
various cycles: :

1.767416, 0.667554, 2.68932L, and so forth.

These valuss are oscillatorily divergent. A plot of these values
against cycles shows that they oscillate about the true valus 1.206161,
end the true valus 1s gpproximately the mean of the values obtalned
fram two consecutive cycles (fig. 8).

If W2 = %(1.440000 + 0.922591) = 1.181296 is taken as the

assumed. value of w02 for the second cycls, and thse mean of this

value and the value found from the second cycle are teken as the
essumed value for the thlxd cycle, and so forth, the values of w02

are Ffound from various cycles as follows:
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Cycles 2 3 b 5
Woo assumed 1.181296  1.212550  1.204658 1.20652k
woo found 1.243805 ° 1.196766 1.008390 . 1.204526
Cycles 6 | 7

w2  assumed © 1.206075 1.206182

Wo2  found 1.206289 1.206131

This process 1ls convergent and W, converges to the real root of
equation (65). The value of W, found at the end of the seventh cycle
is 1.0982L0 and is accurate to four figurss at the end of the f£ifth cycle,
in which case 1t is found to be 1.098010. The results are plotted
against cycles in figure 9.

It is to be moted that K, = -3wy® in the case of n = 1. The
velues cobtained by the method of successive approximations would
converge if were assumed to be the mean valus of two consecutive
cycles. It is found that this convergent property is the same for n > 1.
If the mean of K's or S's found from two conmsecutlive cycles is
taken, the values are convergent but are oscilletorlly divergent 1f the
usual way of successive approximations is followed.

It may be pointed out here that for the speclel cese n =1, 1f
the mean of the values of w. from twg consecutlve cycles is used, the
values are also convergent, na if wy= Ffor the second cycle l1s
assumed to be equal to the sum of 0.6 times the assumed value for the
first cycle and O.4 times the value found from the first cycle, and
so on, the convergence is much more rapid (fig. 10), but this result
i1s not true for the cases with n > l.

The repidity of the convergsnce depends on the accuracy of the
assumed values of K's and S's for the first trial. The deflection W
from the linear small-deflectlon theory cen saslly be determined. When p
is small, the values of w so determinsd would give & first epproximstion
to the problem. It is convenlent, therefore, to start the computatlion -
when p is small and then to consider the cases when p 1s large.

Also 1t is adviseble to begin with but a few net points and then
gradually to increese the number of net points. For example, consider
case n = 1l. When wy is found for a certain small p, a

curve of W, against p can be plotted because the slope of the curve
at the ori can be determined from the small-deflection theory. For

e larger valus of p, wy cen now be estimated by extrapolation. For

n =2, the value of w, found for n =1 can be used as a first trial.
However, W, and w3 are stlll difficult to estimate. In order to

obtain first approximations to these quantities, the ratios w, /wo
and w3/wo may be found from the small-deflection theory and the values

’
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of w, end W3 computed by multiplying these ratlos by ths estimated .

value of Wy, Whsn the deflections have been assumed at every point of
the net, the values of K and 8 can be computed. Theose are the values

which may be used as a first trial. By successlve spproximations, the
true valuss of the w's are then dstermined. The values of Wy and

‘the (wn/wo) 's eare now plotted egainst p to estimate the corresponding

values at a larger p. The values estimated by extrapolation may be
used as the triel values corresponding to that p. The process is
ropeated until the maximum p 1s reached. For n =3, W, from n =2

is uged as a first trial; the remelinder of the procedure ls the same
as before.

Sample Calculations

Finlte-difference solutions of small-deflectlon theory.- The small-

deflection theory of the simply supporited sgquare plate will be studied
first. Thse differential eguation is

v = 2 - - (66) _

and the boundary conditlons are '

w =0 along four edges

52

=5 =0 elong x=3 ) (67)
2 .

:—;%:O along y='_'_‘g-

whera & 1s the length of the sldes.

With equatiﬁns (66) and (67) written nondimensionslly by letting

w‘=%, p‘-.—.;—f-ﬁ-, x'=§, a.nd.y'=%, whore w', p', and x' )
and y' are nondimensional deflection, pressure, end lengths, respectively, '
and with the primes dropped, the boundery-velus problem is:
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V4w=12(1 -ue)p .
w=0 at x—'%—, y:%

g—i—g=o at xa'%-'

zsg =0 at y=1ix )

By reteining the notations previously used, the finlte-difference
equations for the problem are

_\

At + oA P+ A = ot
=0
(W)ki’]e'—,ya% >
(68)

A7) 41 =0
6D
<5;§95=i%-= °

J

where ' = 12(1 - pz)(AZ)h'p.

For n=1 (fig. 5), the finite-difference equation, after the boundsry
conditlons are employed, becomes

161-70 = p!
therefore,

W = 0.0625p"
= 0.042188p

for p.2 = 0.1.
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For n =12 (fig. 6), the finite-difference equations, after the
boundery conditlons are inserted, become

j
20W0-32wl+8w2=:p'
8o + 2k - 16w, = p' P (69)
-/

When Crout's method 1s used to solve these equatlons the solutions
of equation (69) are

wo = 1.031250p' = 0.043506p
wp = 0.750000p"' = 0.031641p
L 0.546875p! = 0.023071p

where p° 1s taken to be equal to O.l1. For p = 0.3,

Wy = 0.032989p

For n=3 (fig. 7) , the finite-difference equatlons, after the
boundary conditions are employed, become

\
20w, - 32wy + O, + bwy = p!
"8W0+25’W'l"l6'972"8w3+6wll_=p'
2w0-16wl+22w2+1+w3-16wh+2w5=p'
(10)
3wl"&f2"&r3+22w4-&5ﬂp'
2 + 2wy = 16w, + 185 = p' J
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The solutions of equation (70) are:

Wo = 5.2466T2p! = 0.043722p
Wy = 4.597633p' = 0.03831kp
wy = k.031250p" = 0.03359%p
wy = 2.735207p" = 0.022793p

ml. = 2.“’02%79' = 00020020P
wg = 1.43916kp! = 0,011993p

if ;.1.2 is asswmed to be O.1. If u is assumed to be 0.3, the answer is

Timoshenko gives the exect value of Wy ~for a simply supported
square plate (reference 27) as: -

Therefore the solution by finite differences with n = 3 is in error
by 0.23 percent. This solutlon is seen to be sufficiently accurate for
engineering purposes. The agreement of the finite-difference epproxi~
metion with the more exact results of Timoshenko is sufficlently close
to encourage epplication of the finite-difference approximetion to the
problems with large deflectlons.

The large-deflections problem, n = 2.- After the boundary condltions
are inserted, the two sets of finite-difference equations are: .

™
20F, - 32F + &5 + UF3 = Ky -
-&F, + 24F) - 16F, - 6.632456F3 + 6.632456F) = K
eF, - 16F, + 20F, + u.632h56F3 - 13.264912F) = K, > (T1)

-2Fy - 4Fy + 4Fp - 0.632456F; + 2.632456F), = 8

Fo =-6Fp + 2.316228F3 + 1.36T5M4F), = Sp

J
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\

and
o L : ™
[20 + 2L.6(ant + B! + 70'):,1.—0 - [32 + 21.6{(aq! + Bo' + 270')]w1
+ (8 +- 21.670')'&{2 = P'
-(8 + 10.88; ")w, + [24 + 21.6(aq* + By + 71')]"1 >(T2)

I:i6 + 21.6(aq " + 71')]w2 =p'

[16 + 10.8(a,* . 52'{]"1 + [20 + 21.6(aé' + B! + 72')]1«'2 =p'

»

It is to be noted that the terms of the left-hand =side of equation (71
do not change if the essumed veluses of XK end S are changsd.
Equation (71).cen be solved uniquely, therefore, in terms of K's
and S's. The given, suxiliary, and final matrices obtained by Crout's
method ere given in tebles 1, 2, and 3, respectively. More significant
Tigures then requlred are used to ensure good results.

2wy

The solutions of eguation (71) are as followe:

~
Fo = -0.048703K; - 0.265696K; - 0.225111K, - 0.304114S; - 0.309525S,
Fy = -0.111203Kp = 0.307363K; - 0.235527TK, - 0.262447S, - 0.288692S,
Fp = -0.103085K, - 0.311962K; - 0.221052K, - 0.162880S; - o.3176h232r(73)
F3 = -0.189937Ky - 0.506498K; = 0.316561K, - 0.2532498, - 0.12662hS,
F) = -0.094968Kg - 0.316561K; - 0.2690TTK, - 0.0633125; - 0.221593S,

~

For a numerical example of the computatlion, let
p = 100
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'W'l W

—~~ p, and _‘-;i-fv:p (figs. 11 and 12),

From the cwrves for wg~ p, b
0

it is estimated that

= 1.135

0.7535

Yo
!
w0
W,

2
o 0.5775

The first trlal values are
Wy = l._l35
= 0.855222

0.655463

2
I

2

These values are written at the right-hend corners below the corre-
sponding net points. The finite-difference petterns are used as glven

in figure %, and @, B, 7, W, ., - W,, and then K and 5 are

found at the net points (fig. 13). As an example,
oy = By = -2(1.135000 - 0.855222) = =0.559556
70 = 1.135000 + 0.655463 - 2 X 0.855222 = 0.080019 o
Ky = (0.080019)2 - (-0.559556)% = =0.306700

Similerly, it is found that

-0.189997
X, = 0.221966
2.368276
1.373368 " -

Ns
|
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From equation (73) the values of F's eare obtained as follows:

Fo = ~1.129866
o= -0.977802
~0.780162

F3 = -0 .689klL

Fy = -0.42h723
These velues are substituted in any one of the expressions (equation (7))
as a check and then are recorded at the net points, as in flgure 13.
Similarly, the values of «', B', and 7' are recorded below the
corresponding veluwss of F.

Equation (T72) can now be written and the glven matrix is

Check

W, W W, = !
1 2 ? colum

0

34322771 -47.107213 8.9844k> 4,218750 0.218750
-12.26902k 36.930948 =-20.392900 L.218750 8.48777h
2.000000 =-19.408458 28.313451 4.218750 15.123743

The check coluvym can be obtalined by using the followling relation:
Check column
L + p!
© 10.884' + p'

6 + 21.6(an’ + Bo') + p!

The sum of the elements in a row should be equal to the valuwe of the
element of the same row In the check colunm. This procedure provides a
check for the substitution made in the given matrix.
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The first approximation glves, therefore

Wy = 1.117078

A computation gimilar to the one outlined in the foregoing nmmerical
example glves

= -0.29378L

o
K, = 0.214841

Sl = 2 -299072

S 1.33997%

V)
]

As e second trlal, assume

, Ky = ;;(-0.306700 - 0.293781) = -0.300241
K, = £(-0.189997 - 0.184115) = -0.187056
K, = .22-.(0,221955 + 0.214841) = 0.218404
S, = £(2.368276 + 2.299072) = 2.333673
S, = {(1.373368 + 1.339974) = 1.356671

The results of the second, third, end fouwrth trlals are shown
in figure 13. The corresponding assumed and ¢omputed values of the
fourth trial are
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Asgumed Computed
K, ~0.300L446 -0 +300006
K, -.187407 -.187h72
K, 218738 .218786
S1 24337941 2338531
84 1.360090 1.360631

The first three velues check with one another, and the results, correctet
to the third decimel place, are

wo = 101269
'W’l = 008502
W, = 0.6528

The large-deflectlons problem, n = 3.~ When n I1s teken to be
greater than 2, the same procedure of computation as that in the case
of n=2 1s stlll valid. As en example, the case of n =3 will be
considered, when the square plate 1s subJjected to & wniform pressure
of p = 100.

After using the boundary conditlons, the two sets of difference
equations (61) and (62) are obtained. Equation (61) can be solved in
terms of K's and S's, and the results are glven in teble k.

Wy W W W)
‘I:rom'bhe curves of Wy~ D, ia—vp, 1'-;(2).\. P, \??)"'P’ w_.o~ P,
and % ~ p (flgs. 12 and 14), the following values are obtainsd by

extrapolation:
Wo =1 1247

w:
“ = 0.
o 0.881

W
‘;g = 0.7932
13’3 = 0.5516

wo
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Wl
o - 0.3037

Wi
‘-f-g = 0.3497

For & first wiel, 1% is assumed that

Vo = 1.12k700
Wy = 0.99997L
Wy = 0.892112
w3 = 0.620385

W), = 0.566511

Vg = 0.393308
Agein these valuves eare written at the right-hand corners below the
corresponding net points. With the computed veluss of «, B, 7,
OHyw, end Agw, the following values are obtained:

Ko = -0.061945

Ky = -0.052063

K, = -0.02286 -

K3 = =0.023043
Ky = 0.001252
0.106245
Sq = 1.592696
1.262838
0.548700

J

2]
H

n
]

By table % the values of F's are found to Dbe

Foy = -1.095495

Fy = -1.028996
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-0.950911
= =0.868159

~0.762520

)
=
n

Fg = ~0.505761
Fg = ~0.675850
7 = -0.546620
Fg = -0.239729

F

The valueg of F's sare written at the left-hend cormers below the
corresponding net points, and the valuss of a', B', and 7' .are
computed.

When the values of a', B°Y, a.nd. 7' ere sybstituted into
equation (62) and it is noted thet p' = 0.00833333p = 0.833333, ‘the
glven matrix of the equations is obtainsd as in table 5 and the suxiliary

metrix as in table 6, and the solutions of equation (62) given by the
£inal matrix are

W = 1.12338%
Wy = 0.998956
0.891465
w,_ = 0.6203hk2

=
]

0.565591
w5 = 0390999

=
]

v

It might be pointed out here that the check column of the glven metrix
mey be obtalned by a dlrect substitutlion by using the followlng relations:
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Chseck columm

p!
-1+ p
2 +p'!
2 X 10.88,' + p'
1 x 10.885" + p'
6 + 21.6(&6’ +7g') +p’
This procedure would provide a way of checking the substitution in the

given matrix, since the sum of the elemenis in any row should be equal
to the element of the same row in the check columm.

The values of Kg, K, K, K3, Ky, K5, S;, Sy, and S5S3 are
found from the camputed values of w's. The mean values of the K's
and S's first essumed and those computed are used as the trial values
for the second cycle, and so on. At the end of the third trial, the
following essumed end computed valuss are obtained:

Aspgumed Computed

Ky -0.,061763 ~0 061695

K, - 051947 -+05189%
K, -.024660 -+024799
| K3 -+023377 -.0234TT
Ky, .00161% 001697
Ks 106177 . «10620k
S, 1.592106 1.592078
S, 1.281878 1.281§1.h

S5 546560 546173
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These values check wlth one another to the fourth descimal plece. The
deflections at the various nst polnts, accurate to the fourth decimal
place, are
wo = l-lE’-I»O
0.9995
Wy = 0.8920
w3 = 0.6207
0.5660

5 = 0.3915

s
]

&
]

2
i

The resvlts of verious trilels are shown in flgure 15.

RELATATION METHOD

When a more accurate result is needed, the plate must be divided
Into a set of finer nets. The number of simultansous equations
Increases as the number of nets 1s increased. In order to avoid the
solution of simultensous equations, Southwsell's relaxation method
may be used. The so-called relaxation method is essentilally & clever
schéme for guessing the solution of a system of difference equatlons.
A brief description of the method and a numerical exemple, the small-
deflection problem of a square plate, are glven in appendix A.

The solutlon of the generel case of the lerge-deflection problems
of rectanguler plates by the relexatlon method hes been studled by Green
and Southwell and their method was outlined previously. Green and
Southwell worked wilth the three complicated equilibrium equations in
terms of the displacements u and v and the deflection w. However,
1t is satlsfactory to use the two much simpler equations in terms of the
stress function ¥ and the deflection w.

The fundamental differential equations (1) and (2) can be rewritten
as follows: . _

P = k (74)

P = 10.8p + 10.8k! (73)
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where

k=<_a_2_1_2 3% %
ox Jy dx2 Jy2

k.=a_2_F8_%_w+§_2£8_2_w_2_§3F__§_2_w_
a2 32 xP2 ™R  x dy x dy

In applying the relaxation method, as usual, the domein of the problem
to be solved is first drawn, and the net points chosen. Since there
are two simulteneous equations to be solved, two sheets of paper may be
used, one for F and one for w. A set of solutions of F and w are
guessed and are recorded on the F- and w-plames, respectively.

By sterting from the assumed values of w, K can be computed
without difficulty. Equation (74) 1s then & linear differential equation
for F, .and the blharmonic relaxation patiern mey be used. After the
resldues at each point have been reduced to the dsaslred extent, the
new values of F may be substituted into equation (75) and it may be
solved by the relaxation method. Egquation (75) leads to a rather
complicated relaxation pettern for w. In acstual computatlons the
biharmonic pattern mey be used, the assumed values of w being used for
the computation of k'. By means of the relaxation process, the residues
at all points ere reduced somewhat. New values of k' are computed
end the resldues are then corrected. The relexatlon operation is applied
agein untll the values of w are determined to the desired accuracy.

The averege values of the new K's and S's and the originally essumed
ones are now ised in the second cycle. The cycles are now repeated unmtil
the final results have the desired accuracy. '

In general, the boundery conditions for F are usually difficult
to handle. It is possible, however, to solve the boundery velues of F
in terms of its values for interior points. The boundary vaelues of F
vary from time to time as the interior values changs. Ths operation
is rather complicated, but it can be handled.

In the case of a square plate with glven edge displacemsnts, the
boundary conditions as given by equation (49) mey be used to some
advantage. Equation (74) can be written as

VeT = k

(76)
VeF = T
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and the boundery condltlons are glven by

-
To,g # 20y 4 oo v 2T, o 4Ty =8y
o m
T (1 - w2 ; 6“’1 ) wn'l’Dz
7 (77)
<AI2F ) I"A-V’ZE)m,:l. =0 ) -
e

In using this form, not only are the boundery conditions much easler to
handle, but also the relaxation pattern 1s simplified from the bihermonic
type to the harmonic type. The simplificaticn ls obtained at the _
expense of Introducing one more equation into the system and therefore
coneldering one more plane. The results obtained are given in figure 16.

DISCUSSION OF RESULTS

The bending problem of a square plate under wniform normal pressure,
with the edges prevented from dlsplacements along the supports but free
to rotate about them, is studled by the finlte-dlfference approximations.
The difference equations are solved by the method of successive approxi-
mation and by the relaxation method. The computeation starts with n =1
to n =3, in which case the plate 1s divlided into 36 square nﬁ‘bs with

25 inner points. The maxlmum normel pregsure calculated 1s _'_p_a_.z = 250,
Eh

After the velues of w and F heave been determined, the stresses
can be found by the following relations:

'=afE=Ay2F _ Bt

g -
¥° (a)®  (m)?

p o

ot o a—ﬁ, =Ax2F _ !
T a2 (a1)2  (a1)?
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x = 2(1 - ua)@xgw ¥ "AY%D (a1)2

_ 1
2(1 - pR)(ar)2

(o + pB)

wo_ 1
oy o u2)(m,)2(a + po)

where o' and o" are the membrane stress and the extreme-fiber
bending stress, respectively. The total stresses o are the sum of
the membrane and bending stresses at the sectlon and are maximum at
the extreme flber of the plate. They are

- t 1]
Oy = 0p' + Oy
c. ! "
y =% * 0

At the center of the square plate, a' =p' and @ =, and therefors
the stresses are

Ow? = g, = @ = B'
S P R O
O" o = < = B
. T T a0 - p(an)2 21 - p)(an)2

The deflections at verious points determined in the cases n =1,
n=2, and n =3 are tabulated in tables 7 to 9. The center deflectims
are plotted against the normal pressure ratlo in figure 12. The mombrane
stresses in the center of the plate and at the centers of the edges are
tebulated in teble 10 and are plotted in figwre 17. Ths bending and
total stresses are tebulated in table 11 and are plotted in Figure 18.
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A study of the resulis shows that the maximum error in center
deflections is O.47 percent for mn = 2 in comparison with h = 3
and the maximum error in the center membrane stresses is O.kh perceﬁt,

both values being conservative. Both maxlimm errors occurred at P—a—'l-; = 250,
4 Eh

The error in the center bending stresses 1s 2 percent at —— = 12.5

en*

4

end 1s 0.83 percent at Eﬂ = 250, both values being unsafe. The error

Eh I
in the center extreme-fiber stresses is 1.6 percent at Ea—‘l; = 12.5

4 En
and 0.l7 percent at p-f‘z = 250, both values being safe. The error in
Eh .
the menbrane, stresses at the center of the sldes l1ls 12 percent for both

b
crx'a.E/E'h2 and O'y '32/Eh2 at PEE = 12.5 and 8.9 percent for both

Eh
I
Gx'aa/Eh2 and. O’y'ae/Ehz at E}: = 250, these values being unsafe.
Eh
One case of n = 4 has been solved by the relaxation method.
Y, Gxo'a? ayo'a? )
At B =100, 1t 1s fownd thet < = 1.1250, = = 4786,
Eh h En2 Eh2
o—— = 11.394, = 9.688, and = 3.064. When the results
2 2
Eh' En L
for n = 3 are compared with those for n = 4 at EEI;_:J.OO‘, the

Eh
center deflection has an error of 0.09 percent, the center membrane stresse
has an error of 0.02 percent, the center total stress has an error of
0.5 porcent, and the membrane stresses ox'a2/En2 and c:y'a.e/}!n‘l.2 have
the errors of 4.2 percent and 4.1 percent, respectively, all values
being unsafe. Since in the present case only the center deflections and
stresses are to be investigated and the errors ere sufficiently small
for engineering purposes, the case n = 3 1s considered to be satisfactory
for the final resulis.

The center deflections obtained by Way (reference 15), Levy
(references 17 and 19), and Head and Sechler (reference 235 are plotted
in figure 19 for comparison with the present results. The center
membrens, bending, and total stresses are plotted in figure 20 1o
compare with the results by Levy (references 17 and 19). It is seen
from thess results that the center deflections are in good agrecment with
toat results from the California Institute of Technology up to

BEI; = 120. The theoretical results ssem to be too low at higher pressures.
Eh
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It is inberesting to note that the test results are really for
clemped-edge plates. The clamping effect ssems to be only locel, and
at the center of the plate the plate behaves Jjust as though 1t were
simply supported; that is, the plate 1s free to rotate about its edges.

From the point of view of the engineer designing the plate, the
totel stresses at the center of the edges ere stlll much larger in the
case of clemped edges than in all the other cases; hence, & design based
on those stresses would glve 2 conservative structure. The center
deflections, however, would give an idea of the magnlitude of the
waghboarding of a boat bottom while a seaplane ls taxying or landing.

CONCLUSIONS

The following conclusions may be drawn from e theoretical anmalysis
of an initilally flat, rectanguler plate with large desflectlons under
either normal pressure or combined normal pressure and side thrust:

1. The large-deflection problems of rectangular plates can be
solved epproximately by the present method with any boundary conditions
and to any degree of accuracy required. Although it is still difficult,
the present method 1s, nevertheless, simpler then the previously used
mothods for glving the seme degree of accuracy.

2. For the square plate considered, case n = 3 glves results of
good accuracy, and the results are consgistent with the existing theories.

3. The clamping effect of & olamped thin plate seems to be only
local. At the center, the plate behaves more like a plate with simply
supported edges; that is, the thin plate 1s approximately free to rotate
about its edges. —_—

3 by
., The test results show that, at B- 5 175 (where B s
' mn’* En*
nondimensional form for normal pressure}, all the exlsting solutions of
the differential equations give unsafe resulte for center deflection
for a square plate. This conclusion perhaps suggests the range in
which the differential equations may be applied.

5. The present results' of the center deflections and menbrans
L e
e
etresses give good agreemsnt with the test resulis when P—[,-_ < 120.
Eh

Massachusetts Institute of Tschnology
Cambridge, Mass., March 4, 1946
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APPENDIX A
BRIEF DESCRIPTION OF RELAXATION METHOD

The idsa behind the treatment by the relaxation method is
essentially Just the sames as that by Cross' method of moment distributlon
in the case of bending of continuous beams. It seems, therefors,
easlest to explain the relaxation method by & comparison wlth the
moment-dilstribution method, since the latter is well accepted and is
familiar to most structural englineers.

The redundant beeam as shown in figure 21(a) is now examined. The
procedure for obteining the redundant support momente by the moment-
distribution method is well known. The first step in the moment-
dlstribution analysis 1s to assume that the slope at each of the four
supports 1s zero. By this assumption, the end moments at A, 3B,

C, and D can be found without difficulty. The result is shown

in figure 21(b). Here the boundery conditions at A and B are
satisfied, and the principle of continulty is also satisfied. The
condition of equilibrium, however, is not satlsfled, since there are
unbalanced moments at B and C. The moment-distribution method now
offers a procedure to balance these unbalanced moments by & relaxation
based on consistent deformations. The analysls by the relexation
mothod, in this case, would be essentially the same. The moments at A,
B, C, and D are assumed to satlsfy the boundary conditlons and the
condition of continuity. The uwnbalanced moments &t B and C are
then distributed by the relasxation besed on conslstent deformations.
The difference lies In that the relaxation method offers more fresdom
in essuming the end moments and therefore could make the convergence of
the operations more rapid. On the other hand, howsver, it becomes
difficult to assuwwe these values.

The msthod of moment distributions applies only to redundant
structures, but the application of the relaxation method extends much
further, and its application to the partial differential equations
has brought the study of englnsering scliences into a new era because
the boundary conditions are now no longer difficult to be described and
to be satisfied. :

The procedure can be illustrated by a study of the smell-deflection
1

theory of thin plates. Ietting w=%—, where w'! and p are the

nondimensional deflection and pressure, respectlvely, glves the
following equilibrium equation in terms of the finite difference

Axh'w + 2A1;Y2w + Ath = 12(1 - p2)(a)" (a1)
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In order to solve the problem, the domain to be investlgated is drawn
and the net points chosen. Velues of w are assumed to satisfy the
boundary condltions and are then written adjacent to each point of the
net. From these values of w, the residuals Q at points (m,n)

are compubted and recorded as follows:

S n = 0¥y n - 861:1+l_,n * Wpei,n * Vmoned t 1'rm',n-il.>

+ 2@1+1,n+:|._ * Vel ,n-1 Y ¥pepnda t wm-l,n-l)

+

+* (Vmon t Ypeo n ¥ "monip ¥ Yo,n-2
. > 3 2 ]

- 1201 - u2)(a1)* , T (a2)

The residuals @ +thus computed cen be thought of as an wmbalanced
force which must be removed from the system. Now, insteed of setting
up a specific iteration process, it is merely observed that if the
deflection at cne point (m,n) is altered, all others remaining fixed,
the residuals wlll change according to the patiern of figure L, the
relexation pattern. Each change of w at any point effects & redistri-
bution of the residuels Q emong the net points, and such changes of w
are desired as will move all the unbalanced forces to the boundary.

For & simply supported plate, the defleciion and bending moments
are zero along the edges. Eguation (Al) cen be written as

2% = »

Ietting V% =M mekes possible the formmlation of the boundary-value
problem as follows:

VM =1
(A3)
M = 0 ealong the four edges
and
Pw = M
(Ak)
w = 0 along the four edges
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The problems can now be solved In two steps, that 1ls, first, by
use of equation (A3) and then by use of equation (Al). This transformatio:
greatly reduces the labor required in applylng the relaxation method
because the relaxation patterm of the harmonlic or Laplaclan type 1s
much simpler than that of ths blharmonic type.

Ag an example, the boundary-valus problem is sclved when the plate
is a square one. The process 1s considered with n = 4. From the
previous results as found from the calculations with n = 3, +the values
of w at all the nst points cen be assumed. By equation (Ah)

" Mpn = Vmaon tWpean * Vpopa *t ¥mone1 " ll""m‘,n (45)

The values of Mm,n are then recorded at the right of the corresponding
net point, and the residuvals

b .
“wm,n = Mnsin tMpey p t Mpopea tMpoper - My n - 1201 - u2)(ar) (46)

are computed and are recorded at the left of these net points. The
results are shown in figures 22(a) and 22(b). For example,

Mg = bwy = by = 4(0.0406) - 4(0.0%37)

M1+=W

2+w3+w5+w7-lnqL

0.0377 + 0.0316 + 0.0231 + 0.0163 - 4(0.0295)

-0 00093
Qo = ¥y - UMy - 0.,002637
= 4(-0.0117) - 4(-0.0124) - 0.002637

= 0.000163
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U

My + Mg + Mg + My - hMy - 0.002637

-0.0106 - 0.0093 - 0.0078 - 0.0064 - 4{-0.0093) - 0.002637

0.001463

where 0.002637 = 12(1 - p2) (A1), since p2 = 0.1 and AL = %

The largest counterbalenced M occurs in the vicinity of the
greatest deviation of the assumed valuss from the correct solution;
so changss are first mede at this point. An examination of figure 22(Db)
showe that the greatest residual occurs at point 2. Since )

Q, = 2M; + 24y - WM, - 0.002637

& change of M, would change Q,e by an amount equal to four times
(-245). Mathemstically,

60, = -ty

vhere A denotes the amount of change. Adding -0.000% to My, while
essuming 21l the other valuss of M +to remaln unchanged gives
= 0.0016, and Q, is now equal to -0.000637. If a nomenclature

similar to that in the method of moment dlstribution is used, this
process can be called belancing the unbalanced Q. A symbol (1) is put
at the side of the value to indicate the flrst balancing. Now 1t 1s
observed that

Q1=M6+2M2 + M3 - My - 0.002637

A chengs of M, with all the other M's fixed would change Q; and Q)
by the relaticns as follows: |
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0y = 2/Mp
Q) = oM,

Now, by relaxing the nets,
AQ)_{_ = -0-00011-

and

Q; = 0.001263 - 0.0008 = 0.000L463

Q) = 0.001463 - 0.000%k = 0.001063

NACA TN No. 1425

These operations may be called cerrying-over and be denoted by (cl).

The whole process consists of 20 balencing and carrying-over
operations by similar calculations. The detalled operations of +the
computations are shown in figure 22(b). After the valuss of M's are

computed, the reslduals are computed as follows:

Uw,n' = Vi

KR -
nt wm--l‘,n wm,n+l * wm,n-l l"Wm.,

n"Mm,n

The values of w may be determinsd by a simllar series of calculations
The detalled operations and computatlions are shown in flgure 22(a).

The whéle process consists of 11 balancing and carrying-over operetions
The center deflectlion ratlo thus obtained 1lg, for p = 0.316228,

Wo = 0.043790p

For u = 0.3,

Wo = 0.043790 x 22ty
0 0.9

which checks exactly with the exact analytical solution.



NACA TN No. 1405 T9

For thin plates with clamped edges, the boundary conditions are

=0, along X =

o'

ow
ox
%g: =0, along y-=

ro'iE

The relaxation pattern of the biharmonlc type must be used in this case.
Although the pattern 1s more complicated, the process ls essentially the
seme .

After the essential i1dea of the relaxation method is grasped, other
problems mey be solved by rether obvious steps. It may be noted that
no gusstion of convergence can ocour in the generel relaxation process
since no specific instructlons are given. If, after some steps, the
reslduals get worse, the intelllgent computer makes changes in the
opposite direction. These remarks, however, oversimplify the problem
somewhat beceuse of two facts: <flrst, the camputer may become confused
as to whether the residuals are really better, and, secondly, there 1s
always & guestlon of whether a solutlon with zerc residuals exlstis.
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PABLE 1.- SOLUTIONS OF EQUATION (71); GIVEN MATRIX

Fo Fqy Fyp Fg -« T K
20.00000000 | ~32.00000000 | 8.00000000 | 4.00000000 0» K
-8.00000000 | 24.00000000 | -16.00000000 | -6.63245600 | 6.632456000 | Ky
2.00000000 | -16.00000000 | £0.00000000 | 4.632456000 | -13.26491200 | K,
~2.00000000 | -5.00000000 | %.00000000 | ~.632456000 | 2.63245600 | )
1.00000000| © -6.00000000 | 2.31622800 1.36754h00 | 8,
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TABLE 2.~ SOLUTIONS OF EQUATION (71); AUXILIARY MATRIX

20.,00000000 | -1.600000000| 0.400000000 | 0.200000000| ©
-8.00000000 | 11.20000000 | =L.l408571h | -.hk9306L3 59218357
2.00000000 | -12.80000000 | L.571h2861 ~.33226425 | -1.24358549
~2,00000000 | =7.200000000| -3.428571k1 | -k.60679800 -.57140858
1.00000000 1.600000000 | ~4.57140858 | 1.31622800 | -k.51278167
ILast column
Ko Ky KQ Sl 82

0.05000000

+035TL429 | 0.0892857L

07812501 24999999 | 0.21875000

-.13566908 | -.32560575 -.16280288 | -0.21707051

-.09496836 | ~.31656115 - +26907699 -.06331223 | -0.22159282
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PABLE 3.- SOLUTIONS OF EQUATION (71); FINAL MATRIX

% 5 % 5 5,
-0.04870254 | -0.26569616 | -0.2251107k | -0.304113%92 | -0.30952531
~11100258 | -.30736283 | -.2355274L | -.262WhT25 | -.28869198
-,10308545 | -.31196199 | -.22205200 | -.1628797hk | -.317642h0
-.16093672 | -.5064978% | -.31656116 | -.25324893 | -.1266244T
-.00496836 | -.31656115 | -.26907699 | -.06331223 | -.22139282
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% x | & | & L | % 2
¥y = -0.116035 | -0.620023 | -0.632001 | -0.496345 | -0.904377 | -0.288561 E
Fy= =.099285 | -.TLh880 | ~.673668| -~.51khop | -.9o3hok | ~.200042 i
Fp = -.2h0pB | -.787231 | -.673033 [ -.525863 | -.916Whk | -.286367 o
r:,, = -,306047 ! -1.034h6% | -.88327L| =-.56076% | -L.032622 | ~.306995 §
Fy = -.261272 | -.927h38 | -.818231| -.555182 | -.961645 | -.2933hk0
By = ~-.186116 | -.680999 | -.620292 | -.462889 | -.830%24 | -.25h089
¥ = =-.0427358 | -1.420958 | -1.139620 | -.B41L148 | -1.302k23 | -.3527HO
¥p= -.303899 | -1.107060 | -1.012996 | -.651212 | -1.20112k | -.3400TT
Fg = -.123459 | -.k6670p | -.443186 | -.3527hO | -.6B015% | -.2Th956
8y 8p 54

<0.292423 | -0.43979L | ~0.182625

~.27Th566 | -.h207h3 | -.177863

-.233863 | -.K13113 | -.18012

- 266686 | -.3%0T66 | -.2h5T6

17534k | -.35301 | -.173066 !

-092310 | ~.206823 | -.251569 |

-.29842 | -.2L707TL | -.054268

-.108535 [ -.318370 | -.079593

~.027134 ~-079593 ~+209833 NATTOWAL ADVISORY

COMMITTEE FCR AERONAUTIOS



TABLE 5.- SOLUTIORS OF EQUATION (62); GIVEN MATRIX

¥o Wy ¥o ¥3 vy W5
25.99577L | -38.2U6029 8.250258 & ,000000 0 0
~9.686636 | 31.006139 | -18.630867 | -10.281802 |  6.595166 | 0©
2.000000 | -18.382610 | 28,241968 4.000000 | -21.336107 | 3.k76749
1.000000 | -10.281802 4,000000 | 2L.752966 | -17.189361 | 2.000000
0 3.000000 | -9.632096 | -B.297097 | 26.941238 | -9.379948
0 0 2.000000 2.000000 -16.2'00257 17832449
0.833333 0.833333

.833333 - . 166667

-833333 -1.166667

833333 5.115135

833333 3.465429

.833333 6.1465485

NATTONAL ADVISORY
COMMITTEE FOR AERONAUTICS

GSHT °*©ON NI VOWVN




TABLE 6.~ SOLUYIONS OF EQUATION (62); AUKILIARY MATRIX

L3

25,995771 | -Ll.h71240h | 0.3173692 | 0.1538712 1] 0
-9.686636 .| 16.7547688 | -.9286089 | -.52L70MB 3936292 | ©
2,000000 | -15.4401292 | 13.2693882 | -.3322875 | -1.149806hk | .2620128
1.000000 | -8.8105616 | -k.4989351 | 18.812109 | -1.0223668 | .1720006
0 3.000000 | -6.8462693 | -8.9979123 8.6886832 | -.6949835
0 0 2.000000 2.6645750 | -11.1763312 | 9.0827491
0.0320565 | 0.0320565

0682703 0085858

137408 | -.0827630

-1093525 2580862

2938535 «5988697

3909987 | 1.3909983
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pa.k wo/h

E-;E n=1 |[n=2 |a=3 |n=*k
0 0 0 0 | =me=---
12.5 .3888 4062 L4055 | -=----
25 S8 | 6092 | 6083 | =m=---
50 .8184 BTk BUE0 | =mmm--
75 9757 | 1.0052 | 1.0031 | ===---

100 1.0980 1.i269 1.1240 | 1.1250

150 1.2888 | 1.3145 | 1.3104 | ==eew-

200 1.4376 | 1.4616 | 14557 | ====--

250 1.5623 | 1.584% | L5770 | ===-=-
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COMMITTER FOR AERONAUTICS



NACA TN No. 1425

TABLE 8.- DEFLECTIONS AT VARIOUS POINTS

o -]

ptmt | wm | wh | wp
0 o] 0 0
12.5 Lo62 .2980 »2198
25 6092 4508 +3363
50 847l 6332 4791
5 1.0052 7555 5766
100 1.1269 .8502 .6528
150 1.3145 .9966 « 7713
200 1.4616 1.1116 .8648
250 1.584k 1.2076 29431
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TABLE 9.- DEFLECTIONS AT VARIOUS POINTS

pltfert | wofn | wy/n | wpn | wa/n | w/n | ws/m
0 0 4] o o 0 0
12.5 1055 | W3564 | L3136 | 2139 1890 1159
25 6083 +5365 4738 +3249 2892 <1822
50 8460 o ThoL .6650 JA1592 4131 2711
5 1.0031 .8905 +7930 «5500 4986 «3370
100 1.1240 «9995 8920 6207 | 5660 .3915
150 1.310% | 1.1677 | 1.0450 « 7305 6717 4804
200 1.4557 | 1.2988 | 1.16k1 +8164 «T551 5531
250 1.5770 } 1.4081 | 1.2634 .8880 8249 6149

NATTONAL ADVISORY
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[Su'bscript 0 denotes center of plate;

TABLE 10.- MEMBRANE STRESSES

subsceript 1 denotes center of sides

G-

qzd'az fgglff oy, ‘&P Ox; &
ggf En2  E2 Eh? ER®
Eh*
n=2 n=3 n=2 n=3 n=2 n=3
o |0 ) 0 0 0 )
12.5] .6103 .6089 03338 | 3795 | 1.055 | 1.200
25 [ 1.38% | 1.377 .T612 | 857k | 2.b07 | 2.711
50 2.695 2.683 1.k8h 1.661- k.693 5.254
> 3.806 | 3.792 | 2.096 | 2.341 6.628 | T.hO1
100 L.802 L.785 2.643 2.943 8.357 | 9.305
150 6.566 6.542 3.613 k.001 11.43 12.65
200 8.136 8.103 h.h73 h.929 1k.15 15.59
250 9.575 9.533 5.26k 5.778 16.64 18.27
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TABLE 11.- EXTREME-FIBER BENDING AND

TOTAL STRESSES AT CENTER OF PLATE

Bending stresses, Totel stresses,
c"a2 o'al . o"a?
k4 2 2 2
pa ' Eh Eh' Eh
b
B n=2 n=3 n=2 n=3
0 o] 0 0 o]
12.5 2.530 2.582 3,140 | 3.191
25 3.708 3.78% 5.092 | 5.158
50 5,010 5.087 7705 | T.T70
o) 5.845 5.928 9.651 | 9.720
100 6.475 6.554 1L.277 |11.339
150 T.439 T.513 14.005 {1k.055
200 8.191 8.261 16.327 |16.36k
250 8.817 8.801 18.392 |18.42kL
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Figure 1.~ Coordinate system and typical loading.

Figure 2.- Coordinate system used by Levy

and Greenman.
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Yy
e A X >ie 4 X +
1 Am,nﬂ
Ay
Y
» Am-l,n Am,n Amsrn
a4y NATIONAL ADVISORY
1 vy COMMITTEE FOR AERONAUTICS
X
Figure 3.- Finite-difference notation.
[ 1]
-1 1
=2 1] -2/ m,n *
m,n ) | 1=1]
2 m,n
A 2
X A
y Axy

Figure 4.- Relaxation pattern.
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Figure 5,- Domsin of problem for n=1.

3 4 LY

NATIONAL ACVIBORY
COMMTTEE FOR AERONAUTICS

Figurs 8.~ Domain of problem for n= 3,
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Figure 7.- Domaln of problem for n = 3.
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Figure 8.~ Divergent values of woz.
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NUMBER OF CYCLES NUMBER OF CYGLES
Figure .~ Convergent values of woz. Figure 10.- Convergent valuaa of woz. Value

of w02 for the second cycle assumed squal
to the sum of 0.6 times the asaumed valusg
for the firat cyele and 0.4 times the valua
found from the firat cycle, and 50 on.
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Figure 11.- Curves for Wy ~ D, wl/wo ~p, and “’2/“'0 ~abD n=2,
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Figure 12.- Center deflections for a square plate under normal pressure p.
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100 NACA TN No. 1425

ojo olo
Pm=i00, nm=2 -
3. s 2,368 278 1 FIRST APPROXIMATION * SECOND APPROXIMATION
8= 1.373 388 ' $,=2.345 881
1- ASSUMED SF L. 363002
2= COMPUTED )
5 =2.299 072
5,= 1.339 974
780162 |.655 463 424723]0 . , =770018].853,907 -419418]|0
ol=ff= 187799 | X =P=-455704 o= = 153934 or=p==-.456 219
Th 089284 | Y= .655 463 1 T'= 0688185 T = 653907
KE .214 841 K,= = 219459
848112
x=p=- 452999
T= 848112 2
KE 214 84]
(Aw)2=. 273853
(Aw), =,279778 .277146
-1.129 886 1.135000 -.977T802 835222 -689444 Q ~1.114,469 1128741 ~964684 851555 - 880153 0
x'afs 204128 oc =B =-.359.556 Xw=8785 444 o p: 299570 ox=P=-554 292 X =-574 449
T's 045576 Y= 080019 B =-3995I8 | Ts 044881 Tu 079458 B=-.395378
Ko=-.308 700 T= 199759 Ke =300 926 re .197688
&kt 136294 K=~ 189907 b 34744 K=-.188043
p's 395280 p's 389332
Y'= 067081 T'= 086071
LT, 078 843225 -
=P u-, 547706 == 569372 NATIONAL ADVISORY
T= .078 740 2 B=-.390228) : COMMITTEE FOR AERONAUTICS
Ks==.2937681 Y= 195113
K=-.184118
olo ole
THIRD APPROXIMATION FOURTH APPROXIMATION
S,= 2.336108 S5 233833
8,2 1359343 S,;= L.38063!
772256 | 852 352 ~420674|0 ~771743 | 852 848 =420 405}0
o'=pt 158423 | X=R=- 455280 . obp= 156342 X=Bx— 455 439
T'= 069092 | Y= .652 552 T® 069067 | T= .652 843
K& 218 S44 Ky 218788
276552 .276 720
-1117582 LI26376 ~967415 849 824 -.682068 O -L116797 LI26 977 ~  -966739 .850257 ~.081558 ©
ok p= 300334 Xu=fiz- 533 104 o a-.573272 b plx 300116 Xmpn- 553440 o(=- 873 537
T'=s 044992 Y= .079280 B=-.394544 T'= 044938 T= 0793l fA=-394 8!8
K== 299 639 T= .97272 K¢=.300008 ~ TR 197409
o= 3si80  Ki=-.187268 : o'z jagiay K187 472
B'= .3g03I8 B'= .ase992
T'= 086235

T'= 086157

Pigure 13.- Method of tabulationof « , B, 7 , (Wpe1 - W), K,S,and F. n = 2.
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Figure 14.- Curves of Wy ~ D, W1/W0 ~ D, w2/w0 ~ P, wﬁ/w0 ~ P, w4/w0 ~ p, and
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3¢ =282 838

S, =t592 696 )
/
S3*.598 700

!/ ASSUr7EpL

Sg=/280 080

. ' e COrTPUTED
S5,21.590 165 2
Syx 595095 }

(aAw), =.333 308
~50576/ 393 308 -239 729 (o
=ML .009273|x28x-.220 105
Y*-.026343|7s .393308
Ke= JOG 295

330 999
Refn-.2/6 FOT
Y= .350 999
KAg= ./06 078

FAw), = .07 &5 (4 w) s.325 60/ (AwW), = . 5¢¢.57/
-850 S//| .89z re ~762 530 .566 5/ -5% 620 |o
XS'e SO BOG|K B2~ 2/TTI2 o« '=.027 508 «x-.840 9/0
Y's .0683¢8r= ./52 398 Al 151120, px-. 119 32

Ko=~02¢ 786 Y's .080/32 Y= ./73 203
Ke» .00l 252

(aw)s =.r07 #3/ (aw)y= . 325 @74 (A W)y =./790 592
.89/ €65 .565 59/

S~ 2/ 385 oln= 228 7/7
r= ./8/ 282 Be-.119 84/
Ka=.024 805 Y= /74 522

Kee .0OI 754

@W),=.1294 729 (aw) = 379 5886 AW, - .620 385
~1.095495 (/124700 ~.028 996G .999 57/

-.868/59 .620385 -675850 O
BT U3 I8 K @r- LTS8 Wln 099338 X x-.259 857 «'n .03/ 472 Lm-.240 799
Y's 015G Y= .0/G 870 s I56/70 Pc-2/5TI8 p'r .8//278 Bx—-.07 748
#,x-06/ 692 Y%+ .02755¢ Y= .083985 Y .023 59/ V=

053879
K »=.082 063 Hy==.023 093
(8 yrig=.r2q 428 (Aw)s =.378 Grq (A W)z =.620 3v&
L/23 384 . 558 556 G20 372
%1 Ba~.298 856 Le-.259 18G L~ 24! 728
r= .0/6 937 PBr—-.219 982 A=~ 1093502
Kym-. 06l 72 Y= .08z 740 Y= .0%5q 75/
/== 08] 86 Hy=—~.023 472

(a) First approximation.

‘Figure 15.- Results of various approximations. p = 100; n = 3,
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108

S, =592 78/
Sz=1282 296
S = . 596 229

(¢1]
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SO7 S5Y

<'s@8'= 009 I/3
Yi-.026954

326 997

-.50989¢| .39/ 165 -.239 :osr (=

x @2, 206 8O
Ys: -39/ 965
o= . . j06 208

-.9997/0

LAY 170 815
Y= 0684390

/29 52/

892 277 -76/972

Xxfa-.8/8 595 &'z 027362
r= /87943 B .1%0 98/
Ke=-02¢9 8326 Y= 05009/

378 20«

566 /20 -. 595 878| O

oLu~-2g0 O23
Ba==- 119 508
Y= /79 655
= .00/ 739

-1.099 165 | /27 292 -1.087733

WL'efSs /32 86T . =8 v~.295042 &'z 09I %~ -.254 383 w.’: .03/ 365 oz-.29/963
Y= .016 96T P 156076 B=-.ar5 /08 P> .2///97
Kz-06! 734 Y2 0Z75M r= .052 807 Y= .0Z57/

Y's

Or1 59/

D32 77/ -.867 069

x-081 93/

(b) Second approximation.

Figure 15.- Continued.

620 867 -Ge75 oq0 O

A=-.10995¢
Y= 059797
H=-.023996



104 NACA TN No. 1425 -
olo
NATIONAL ADVISORY -
S, 1.552 o78 COMMITTEE FOR AERONAUTICS
Sy =/.28! 817
Sy = .596 r73
~.S049 9/7 | .39/ 496 -. 239 /690 -
s 009053 |6 rgn-2/c P96
Y=-.026 599 | r= .39/ 956
A= ./0G 2809
/O7, S/t .325 97
~.979 937 |.892 033 - 764,Gl7|.566 096 -.5«'97@0
X'n B /[0 268 |RrBr1~2/0 176 &'a 027 3/9| w n 890 O59 .
- Yh 068380 r= .15/ 937 A= 57039 | Ax-, 119 @S0
Mr=024 7.99 rT- SO 118 | Y= /79 550
A= 001697
/29 482 .378 798
-1.09¢9 998 ll24026 -1.0279%8 .999 594 ~SETN - 620 196 -.6752/7 ©

xde /32 906 wrgu-.898 961 &'z 099260 «-.2593/6
Y’z 0/ 608 ra .0/ 37/ PB's 186 110 M- /5022
Kz-.06! €95 )= .027606 Y= -052 8/

A=, 08/ 897

%'z .03/3¢7 A=s.29/ 978
A= 2l/322 B=-./08 00
r'= 023578 r= 0S¢ 700

Ha~OZ3 I77

(¢) Third approximation,

Figure 15.-

Concluded.
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(a) Domaln of problem, w-plane.
Figure 18,- Relaxaiion method. p=100; n=4,

_____ ===
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|
2
L5558
) )
E1ARS 39098
2 b rd
98926 TI254 A0/
/ N 6
/05433 A029 A£A027

(b} Domain of problem, T-plane,

Figore 18.- Contnued.
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1 ! ! ] |
i I |
I ' i /4
0 1| - /1E76
|
|
|
S P S <t
-.3£635 |-.,8678 : L0828
I
I
X S Z _} /-
= 75240 -S$7709 ~-.38909 |-./2372
: |
|
: |
2 4 ya “” o L //-
~/£0007/ |-.8P092 |-.7#57S e FEIAS |- 39379
' |
|
o / 3 é o ___\1so’
~/.07950 —~/.0F2/ ~ 94299 -8//R6 - 66423% —~.47055

(¢) Domain of problem, F-plane.

Figure 16.- Concluded.
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Figure 21.- Moment-distribution method.
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